Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subtropical to boreal convergence of tree-leaf temperatures

Abstract

The oxygen isotope ratio (δ18O) of cellulose is thought to provide a record of ambient temperature and relative humidity during periods of carbon assimilation1,2. Here we introduce a method to resolve tree-canopy leaf temperature with the use of δ18O of cellulose in 39 tree species. We show a remarkably constant leaf temperature of 21.4 ± 2.2 °C across 50° of latitude, from subtropical to boreal biomes. This means that when carbon assimilation is maximal, the physiological and morphological properties of tree branches serve to raise leaf temperature above air temperature to a much greater extent in more northern latitudes. A main assumption underlying the use of δ18O to reconstruct climate history is that the temperature and relative humidity of an actively photosynthesizing leaf are the same as those of the surrounding air3,4. Our data are contrary to that assumption and show that plant physiological ecology must be considered when reconstructing climate through isotope analysis. Furthermore, our results may explain why climate has only a modest effect on leaf economic traits5 in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plot of predicted and observed cellulose Δ 18 O c against mean annual temperature.
Figure 2: Resolved tree-canopy temperature versus mean annual temperature.
Figure 3: Comparison of ambient and canopy-based relative humidity.

Similar content being viewed by others

References

  1. Epstein, S., Thompson, P. & Yapp, C. J. Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198, 1209–1215 (1977)

    Article  ADS  CAS  Google Scholar 

  2. Roden, J. S., Lin, G. & Ehleringer, J. R. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 64, 21–35 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Anderson, W., Bernasconi, S. & McKenzie, J. Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): An example from central Switzerland (1913–1995). J. Geophys. Res. 103, 31,625–31,636 (1998)

    Article  ADS  Google Scholar 

  4. Wright, W. E. & Leavitt, S. W. Boundary layer humidity reconstruction for a semiarid location from tree ring cellulose δ18O. J. Geophys. Res. Atmos. 111, D18105 (2006)

    Article  ADS  Google Scholar 

  5. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Gray, J. & Thompson, P. Climatic information from 18O/16O ratios of cellulose in tree rings. Nature 262, 481–482 (1976)

    Article  ADS  Google Scholar 

  7. Bowen, G. & Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Wat. Resour. Res. 39, 1299 (2003)

    Article  ADS  Google Scholar 

  8. Evans, M. N. & Schrag, D. P. A stable isotope-based approach to tropical dendroclimatology. Geochim. Cosmochim. Acta 68, 3295–3305 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Miller, D. L. et al. Tree-ring isotope records of tropical cyclone activity. Proc. Natl Acad. Sci. USA 103, 14294–14297 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Robertson, I., Waterhouse, J. S., Barker, A. C., Carter, A. H. C. & Switsur, V. R. Oxygen isotope ratios of oak in east England: implications for reconstructing the isotopic composition of precipitation. Earth Planet. Sci. Lett. 191, 21–31 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Saurer, M., Cherubini, P. & Siegwolf, R. Oxygen isotopes in tree rings of Abies alba: The climatic significance of interdecadal variations. J. Geophys. Res. Atmos. 105, 12461–12470 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Cernusak, L. A., Farquhar, G. D. & Pate, J. S. Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus . Tree Physiol. 25, 129–146 (2005)

    Article  CAS  Google Scholar 

  13. Gessler, A., Peuke, A. D., Keitel, C. & Farquhar, G. D. Oxygen isotope enrichment of organic matter in Ricinus communis during the diel course and as affected by assimilate transport. New Phytol. 174, 600–613 (2007)

    Article  CAS  Google Scholar 

  14. Miller, P. C. Bioclimate, leaf temperature, and primary production in red mangrove canopies in south Florida. Ecology 53, 22–45 (1972)

    Article  Google Scholar 

  15. Smith, W. K. Temperatures of desert plants—another perspective on adaptability of leaf size. Science 201, 614–616 (1978)

    Article  ADS  CAS  Google Scholar 

  16. Helliker, B. R. & Ehleringer, J. R. Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses. Proc. Natl Acad. Sci. USA 97, 7894–7898 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Wang, X.-F. & Yakir, D. Temporal and spatial variations in the oxygen-18 content of leaf water in different plant species. Plant Cell Environ. 18, 1377–1385 (1995)

    Article  Google Scholar 

  18. Buhay, W. M., Edwards, T. W. D. & Aravena, R. Evaluating kinetic fractionation factors used for ecologic and paleoclimatic reconstructions from oxygen and hydrogen isotope ratios in plant water and cellulose. Geochim. Cosmochim. Acta 60, 2209–2218 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Barbour, M. M. & Farquhar, G. D. Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ. 23, 473–485 (2000)

    Article  CAS  Google Scholar 

  20. Richter, S. L., Johnson, A. H., Dranoff, M. M. & Taylor, K. D. Continental-scale patterns in modern wood cellulose δ18O: implications for interpreting paleo-wood cellulose δ18O. Geochim. Cosmochim. Acta (in the press)

  21. Sternberg, L. D. L. et al. Oxygen isotope ratios of cellulose-derived phenylglucosazone: An improved paleoclimate indicator of environmental water and relative humidity. Geochim. Cosmochim. Acta 71, 2463–2473 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Smith, W. K. & Carter, G. A. Shoot structural effects on needle temperatures and photosynthesis in conifers. Am. J. Bot. 75, 496–500 (1988)

    Article  Google Scholar 

  23. Leuzinger, S. & Korner, C. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric. For. Meteorol. 146, 29–37 (2007)

    Article  ADS  Google Scholar 

  24. Michaletz, S. T. & Johnson, E. A. Foliage influences forced convection heat transfer in conifer branches and buds. New Phytol. 170, 87–98 (2006)

    Article  CAS  Google Scholar 

  25. Long, S. P. & Woodward, F. I. (eds) Plants and Temperature (Society for Experimental Biology, Cambridge, 1988)

    Google Scholar 

  26. Berry, J. & Björkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 31, 491–543 (1980)

    Article  Google Scholar 

  27. Way, D. A. & Sage, R. F. Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.]. Glob. Change Biol. 14, 624–636 (2008)

    Article  ADS  Google Scholar 

  28. Jahren, A. H. & Sternberg, L. S. L. Humidity estimate for the middle Eocene Arctic rain forest. Geology 31, 463–466 (2003)

    Article  ADS  Google Scholar 

  29. Brendel, O., Iannetta, P. P. M. & Sterwart, D. A rapid and simple method to isolate pure α-cellulose. Phytochem. Anal. 11, 7–10 (2000)

    Article  CAS  Google Scholar 

  30. Craig, H. & Gordon, L. I. in Stable Isotopes in Oceanographic Studies and Paleotemperatures (ed. Tongiorigi, E.) 9–130 (Consiglio Nazionale Delle Ricerche Laboratorio di Geologia Nucleare, Pisa, 1965)

    Google Scholar 

  31. Farquhar, G. D. & Lloyd, J. in Stable Isotopes and Plant Carbon/Water Relations (eds Ehleringer, J. R., Hall, A. E. & Farquhar, G. D.) 47–70 (Academic, San Diego, CA, 1993)

    Book  Google Scholar 

  32. Buck, A. L. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 20, 1527–1532 (1981)

    Article  ADS  Google Scholar 

  33. Sternberg, L. S. L. in Stable Isotopes in Ecological Research (eds Rundel, P. W., Ehleringer, J. R. & Nagy, K. A.) 124–141 (Springer, New York, 1989)

    Book  Google Scholar 

  34. Schulze, E.-D., Kelliher, F. M., Korner, C., Lloyd, J. & Leuning, R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25, 629–660 (1994)

    Article  Google Scholar 

  35. Prentice, I. C. et al. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19, 117–134 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. H. Johnson for discussion of the results; D. Vann and M. Dranoff for help with analysis; and B. Casper, P. Petraitis and D. Brisson for comments on the manuscript. This work was supported by a start-up grant from the University of Pennsylvania and a grant from the A.W. Mellon Foundation.

Author Contributions S.L.R. developed the framework for the sampling scheme and analysed the tree-ring cores. B.R.H. developed the framework for the modelling analysis and wrote the majority of the paper. Both authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent R. Helliker.

Supplementary information

Supplementary Tables

The file contains Supplementary Tables 1-2.. (PDF 249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helliker, B., Richter, S. Subtropical to boreal convergence of tree-leaf temperatures. Nature 454, 511–514 (2008). https://doi.org/10.1038/nature07031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07031

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing