Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared

Abstract

Quasars are thought to be powered by supermassive black holes accreting surrounding gas1,2,3. Central to this picture is a putative accretion disk which is believed to be the source of the majority of the radiative output2,3,4. It is well known, however, that the most extensively studied disk model5—an optically thick disk which is heated locally by the dissipation of gravitational binding energy—is apparently contradicted by observations in a few major respects6,7. In particular, the model predicts a specific blue spectral shape asymptotically from the visible to the near-infrared5,8, but this is not generally seen in the visible wavelength region where the disk spectrum is observable9,10,11,12,13. A crucial difficulty has been that, towards the infrared, the disk spectrum starts to be hidden under strong, hot dust emission from much larger but hitherto unresolved scales, and thus has essentially been impossible to observe. Here we report observations of polarized light interior to the dust-emitting region that enable us to uncover this near-infrared disk spectrum in several quasars. The revealed spectra show that the near-infrared disk spectrum is indeed as blue as predicted. This indicates that, at least for the outer near-infrared-emitting radii, the standard picture of the locally heated disk is approximately correct.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overlay of the polarized- and total-light spectra observed in six different quasars.
Figure 2: Spectral index of polarized light spectra.

Similar content being viewed by others

References

  1. Salpeter, E. E. Accretion of interstellar matter by massive objects. Astrophys. J. 140, 796–800 (1964)

    Article  ADS  Google Scholar 

  2. Lynden-Bell, D. Galactic nuclei as collapsed old quasars. Nature 223, 690–694 (1969)

    Article  ADS  Google Scholar 

  3. Shields, G. A. Thermal continuum from accretion disks in quasars. Nature 272, 706–708 (1978)

    Article  ADS  Google Scholar 

  4. Malkan, M. A. The ultraviolet excess of luminous quasars. II - Evidence for massive accretion disks. Astrophys. J. 268, 582–590 (1983)

    Article  ADS  CAS  Google Scholar 

  5. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  6. Antonucci, R. in High Energy Processes in Accreting Black Holes (Astron. Soc. Pacif. Conf. Ser. 161) (eds Poutanen, J. & Svensson, R.) 193–203 (Astronomical Society of the Pacific, San Francisco, 1999)

    Google Scholar 

  7. Koratkar, A. & Blaes, O. The ultraviolet and optical continuum emission in active galactic nuclei: the status of accretion disks. Publ. Astron. Soc. Pacif. 111, 1–30 (1999)

    Article  ADS  Google Scholar 

  8. Hubeny, I., Agol, E., Blaes, O. & Krolik, J. H. Non-LTE models and theoretical spectra of accretion disks in active galactic nuclei. III. Integrated spectra for hydrogen-helium disks. Astrophys. J. 533, 710–728 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Neugebauer, G. et al. Continuum energy distributions of quasars in the Palomar-Green Survey. Astrophys. J. Suppl. Ser. 63, 615–644 (1987)

    Article  ADS  CAS  Google Scholar 

  10. Cristiani, S. & Vio, R. The composite spectrum of quasars. Astron. Astrophys. 227, 385–393 (1990)

    ADS  CAS  Google Scholar 

  11. Francis, P. J. et al. A high signal-to-noise ratio composite quasar spectrum. Astrophys. J. 373, 465–470 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Zheng, W., Kriss, G. A., Telfer, R. C., Grimes, J. P. & Davidsen, A. F. A. Composite HST spectrum of quasars. Astrophys. J. 475, 469–479 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Vanden Berk, D. E. et al. Composite quasar spectra from the Sloan Digital Sky Survey. Astron. J. 122, 549–564 (2001)

    Article  ADS  Google Scholar 

  14. Sanders, D. B., Phinney, E. S., Neugebauer, G., Soifer, B. T. & Matthews, K. Continuum energy distribution of quasars - Shapes and origins. Astrophys. J. 347, 29–51 (1989)

    Article  ADS  Google Scholar 

  15. Davis, S. W., Woo, J.-H. & Blaes, O. M. The UV continuum of quasars: Models and SDSS spectral slopes. Astrophys. J. 668, 682–698 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Malkan, M. in Theory of Accretion Disks (NATO ASIC Proc. 290) (ed. Meyer, F.) 19–28 (Kluwer Academic, Norwell, Massachusetts, 1989)

    Book  Google Scholar 

  17. Malkan, M. A. & Filippenko, A. V. The stellar and nonstellar continua of Seyfert galaxies: Nonthermal emission in the near-infrared. Astrophys. J. 275, 477–492 (1983)

    Article  ADS  CAS  Google Scholar 

  18. Antonucci, R. R. J. Optical polarization position angle versus radio structure axis in Seyfert galaxies. Nature 303, 158–159 (1983)

    Article  ADS  Google Scholar 

  19. Smith, J. E. et al. A spectropolarimetric atlas of Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 335, 773–798 (2002)

    Article  ADS  Google Scholar 

  20. Smith, J. E. et al. Seyferts on the edge: polar scattering and orientation-dependent polarization in Seyfert 1 nuclei. Mon. Not. R. Astron. Soc. 350, 140–160 (2004)

    Article  ADS  Google Scholar 

  21. Kishimoto, M., Antonucci, R. & Blaes, O. A first close look at the Balmer-edge behaviour of the quasar big blue bump. Mon. Not. R. Astron. Soc. 345, 253–260 (2003)

    Article  ADS  Google Scholar 

  22. Kishimoto, M., Antonucci, R., Boisson, C. & Blaes, O. The buried Balmer edge signatures from quasars. Mon. Not. R. Astron. Soc. 354, 1065–1092 (2004)

    Article  ADS  Google Scholar 

  23. Webb, W., Malkan, M., Schmidt, G. & Impey, C. The wavelength dependence of polarization of active galaxies and quasars. Astrophys. J. 419, 494–514 (1993)

    Article  ADS  Google Scholar 

  24. Impey, C. D., Malkan, M. A., Webb, W. & Petry, C. E. Ultraviolet spectropolarimetry of high-redshift quasars with the Hubble Space Telescope. Astrophys. J. 440, 80–90 (1995)

    Article  ADS  Google Scholar 

  25. Kishimoto, M., Antonucci, R. & Blaes, O. The dust-eliminated shape of quasar spectra in the near-infrared: a hidden part of the big blue bump. Mon. Not. R. Astron. Soc. 364, 640–648 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Bentz, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M. & Onken, C. A. The radius-luminosity relationship for active galactic nuclei: the effect of host-galaxy starlight on luminosity measurements. Astrophys. J. 644, 133–142 (2006)

    Article  ADS  Google Scholar 

  27. Blaes, O. M. in Accretion Discs, Jets and High Energy Phenomena in Astrophysics (eds Beskin, V. et al.) 137–185 (Springer, Berlin, 2003)

    Google Scholar 

  28. Agol, E. & Krolik, J. H. Magnetic stress at the marginally stable orbit: Altered disk structure, radiation, and black hole spin evolution. Astrophys. J. 528, 161–170 (2000)

    Article  ADS  Google Scholar 

  29. Shlosman, I. & Begelman, M. C. Self-gravitating accretion disks in active galactic nuclei. Nature 329, 810–812 (1987)

    Article  ADS  Google Scholar 

  30. Goodman, J. Self-gravity and quasi-stellar object discs. Mon. Not. R. Astron. Soc. 339, 937–948 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The UK Infrared Telescope (UKIRT) is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK. We thank the Department of Physical Sciences, University of Hertfordshire, for providing the IRPOL2 polarimetry facility for the UKIRT. This research is partially based on observations collected at the European Southern Observatory, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kishimoto.

Supplementary information

Supplementary information

The file contains Supplementary Notes, Supplementary Figures 1-8 and Supplementary Tables 1-8. This Supplementary Information contains details on observations and data reductions, and also on the removal of instrumental polarization. (PDF 1683 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishimoto, M., Antonucci, R., Blaes, O. et al. The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared. Nature 454, 492–494 (2008). https://doi.org/10.1038/nature07114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07114

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing