Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Positive feedback of G1 cyclins ensures coherent cell cycle entry

Abstract

In budding yeast, Saccharomyces cerevisiae, the Start checkpoint integrates multiple internal and external signals into an all-or-none decision to enter the cell cycle. Here we show that Start behaves like a switch due to systems-level feedback in the regulatory network. In contrast to current models proposing a linear cascade of Start activation, transcriptional positive feedback of the G1 cyclins Cln1 and Cln2 induces the near-simultaneous expression of the 200-gene G1/S regulon. Nuclear Cln2 drives coherent regulon expression, whereas cytoplasmic Cln2 drives efficient budding. Cells with the CLN1 and CLN2 genes deleted frequently arrest as unbudded cells, incurring a large fluctuation-induced fitness penalty due to both the lack of cytoplasmic Cln2 and insufficient G1/S regulon expression. Thus, positive-feedback-amplified expression of Cln1 and Cln2 simultaneously drives robust budding and rapid, coherent regulon expression. A similar G1/S regulatory network in mammalian cells, comprised of non-orthologous genes, suggests either conservation of regulatory architecture or convergent evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positive feedback drives the Start of the budding yeast cell cycle.
Figure 2: Cln1 and Cln2 drive coherent expression of the SBF/MBF regulon.
Figure 3: Stochastic unbudded arrest in cln1 Δ cln2 Δ cells and its modulation by Cln2, Cln3, Whi5, and the mitotic cyclins.
Figure 4: Cln1 and Cln2 are required for rapid phosphorylation and inactivation of the rate-limiting inhibitor Whi5.
Figure 5: Function of nuclear Cln2 and a model for Start regulation by positive feedback.

Similar content being viewed by others

References

  1. Simchen, G., Pinon, R. & Salts, Y. Sporulation in Saccharomyces cerevisiae: premeiotic DNA synthesis, readiness and commitment. Exp. Cell Res. 75, 207–218 (1972)

    CAS  PubMed  Google Scholar 

  2. Nachman, I., Regev, A. & Ramanathan, S. Dissecting timing variability in yeast meiosis. Cell 131, 544–556 (2007)

    CAS  PubMed  Google Scholar 

  3. Shenhar, G. & Kassir, Y. A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae . Mol. Cell. Biol. 21, 1603–1612 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferrell, J. E. & Machleder, E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280, 895–898 (1998)

    ADS  CAS  PubMed  Google Scholar 

  5. Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 426, 460–465 (2003)

    ADS  CAS  PubMed  Google Scholar 

  6. Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA 100, 975–980 (2003)

    ADS  CAS  PubMed  Google Scholar 

  7. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003)

    CAS  PubMed  Google Scholar 

  8. Hartwell, L. H., Culotti, J., Pringle, J. R. & Reid, B. J. Genetic control of the cell division cycle in yeast. Science 183, 46–51 (1974)

    ADS  CAS  PubMed  Google Scholar 

  9. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae . Exp. Cell Res. 105, 79–98 (1977)

    CAS  PubMed  Google Scholar 

  10. Lord, P. G. & Wheals, A. E. Variability in individual cell cycles of Saccharomyces cerevisiae . J. Cell Sci. 50, 361–376 (1981)

    CAS  PubMed  Google Scholar 

  11. Di Talia, S., Skotheim, J. M., Bean, J. M., Siggia, E. D. & Cross, F. R. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448, 947–951 (2007)

    ADS  CAS  PubMed  Google Scholar 

  12. Jorgensen, P. & Tyers, M. How cells coordinate growth and division. Curr. Biol. 14, R1014–R1027 (2004)

    CAS  PubMed  Google Scholar 

  13. Tyers, M., Tokiwa, G. & Futcher, B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12, 1955–1968 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dirick, L., Bohm, T. & Nasmyth, K. Roles and regulation of Cln–Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae . EMBO J. 14, 4803–4813 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stuart, D. & Wittenberg, C. CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev. 9, 2780–2794 (1995)

    CAS  PubMed  Google Scholar 

  16. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kato, M., Hata, N., Banerjee, N., Futcher, B. & Zhang, M. Q. Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 5, R56 (2004)

    PubMed  PubMed Central  Google Scholar 

  18. de Bruin, R. A., McDonald, W. H., Kalashnikova, T. I., Yates, J. & Wittenberg, C. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117, 887–898 (2004)

    CAS  PubMed  Google Scholar 

  19. Costanzo, M. et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117, 899–913 (2004)

    CAS  PubMed  Google Scholar 

  20. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74, 993–1007 (1993)

    CAS  PubMed  Google Scholar 

  21. de Bruin, R. A. et al. Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol. Cell 23, 483–496 (2006)

    CAS  PubMed  Google Scholar 

  22. Cross, F. R. & Tinkelenberg, A. H. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65, 875–883 (1991)

    CAS  PubMed  Google Scholar 

  23. Dirick, L. & Nasmyth, K. Positive feedback in the activation of G1 cyclins in yeast. Nature 351, 754–757 (1991)

    ADS  CAS  PubMed  Google Scholar 

  24. Bean, J. M., Siggia, E. D. & Cross, F. R. Coherence and timing of cell cycle Start examined at single-cell resolution. Mol. Cell 21, 3–14 (2006)

    CAS  PubMed  Google Scholar 

  25. Mateus, C. & Avery, S. V. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16, 1313–1323 (2000)

    CAS  PubMed  Google Scholar 

  26. Samoilov, M. S., Price, G. & Arkin, A. P. From fluctuations to phenotypes: the physiology of noise. Sci. STKE 2006, re17 (2006)

    PubMed  Google Scholar 

  27. Iyer, V. R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001)

    ADS  CAS  PubMed  Google Scholar 

  28. Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001)

    CAS  PubMed  Google Scholar 

  30. Koch, C., Schleiffer, A., Ammerer, G. & Nasmyth, K. Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at Start, whereas Clb/Cdc28 kinases displace it from the promoter in G2 . Genes Dev. 10, 129–141 (1996)

    CAS  PubMed  Google Scholar 

  31. Moffat, J. & Andrews, B. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast. Nature Cell Biol. 6, 59–66 (2004)

    CAS  PubMed  Google Scholar 

  32. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998)

    ADS  CAS  PubMed  Google Scholar 

  33. Wijnen, H., Landman, A. & Futcher, B. The G1 cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol. Cell. Biol. 22, 4402–4418 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Edgington, N. P. & Futcher, B. Relationship between the function and the location of G1 cyclins in S. cerevisiae . J. Cell Sci. 114, 4599–4611 (2001)

    CAS  PubMed  Google Scholar 

  35. Miller, M. E. & Cross, F. R. Distinct subcellular localization patterns contribute to functional specificity of the Cln2 and Cln3 cyclins of Saccharomyces cerevisiae . Mol. Cell. Biol. 20, 542–555 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Koch, C., Moll, T., Neuberg, M., Ahorn, H. & Nasmyth, K. A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261, 1551–1557 (1993)

    ADS  CAS  PubMed  Google Scholar 

  37. Bean, J. M., Siggia, E. D. & Cross, F. R. High functional overlap between MBF and SBF in the G1/S transcriptional program in Saccharomyces cerevisiae . Genetics 171, 49–61 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. McCusker, D. et al. Cdk1 coordinates cell-surface growth with the cell cycle. Nature Cell Biol. 9, 506–515 (2007)

    CAS  PubMed  Google Scholar 

  39. Polymenis, M. & Schmidt, E. V. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev. 11, 2522–2531 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, H., Gari, E., Verges, E., Gallego, C. & Aldea, M. Recruitment of Cdc28 by Whi3 restricts nuclear accumulation of the G1 cyclin–Cdk complex to late G1. EMBO J. 23, 180–190 (2004)

    CAS  PubMed  Google Scholar 

  41. Schneider, B. L., Yang, Q. H. & Futcher, A. B. Linkage of replication to Start by the Cdk inhibitor Sic1. Science 272, 560–562 (1996)

    ADS  CAS  PubMed  Google Scholar 

  42. Lanker, S., Valdivieso, M. H. & Wittenberg, C. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271, 1597–1601 (1996)

    ADS  CAS  PubMed  Google Scholar 

  43. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health (J.M.S., E.D.S. and F.R.C.), the Burroughs Wellcome Fund (J.M.S.) and the National Science Foundation (E.D.S.). We thank N. Buchler, G. Charvin, B. Drapkin and J. E. Ferrell for conversations; J. Widom and C. Wittenberg for comments on the manuscript; J. M. Bean, B. Timney and J. Robbins for help with strain/plasmid construction; M. Schwab for the plasmid pWS358; B. Futcher for the CLN2-NES and CLN2-NLS plasmids; E. Bi for the pKT355 mCherry tagging plasmid; and M. Tyers for WHI5 phosphorylation site mutant strains and plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Skotheim.

Supplementary information

Supplementary information

The file contains Supplementary Methods, Supplementary Table and Supplementary Figures S1-S14 with Legends. (PDF 1575 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skotheim, J., Di Talia, S., Siggia, E. et al. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454, 291–296 (2008). https://doi.org/10.1038/nature07118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing