Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for EGFR ligand sequestration by Argos

Abstract

Members of the epidermal growth factor receptor (EGFR) or ErbB/HER family and their activating ligands are essential regulators of diverse developmental processes1,2. Inappropriate activation of these receptors is a key feature of many human cancers3, and its reversal is an important clinical goal. A natural secreted antagonist of EGFR signalling, called Argos, was identified in Drosophila4. We showed previously that Argos functions by directly binding (and sequestering) growth factor ligands that activate EGFR5. Here we describe the 1.6-Å resolution crystal structure of Argos bound to an EGFR ligand. Contrary to expectations4,6, Argos contains no EGF-like domain. Instead, a trio of closely related domains (resembling a three-finger toxin fold7) form a clamp-like structure around the bound EGF ligand. Although structurally unrelated to the receptor, Argos mimics EGFR by using a bipartite binding surface to entrap EGF. The individual Argos domains share unexpected structural similarities with the extracellular ligand-binding regions of transforming growth factor-β family receptors8. The three-domain clamp of Argos also resembles the urokinase-type plasminogen activator (uPA) receptor, which uses a similar mechanism to engulf the EGF-like module of uPA9. Our results indicate that undiscovered mammalian counterparts of Argos may exist among other poorly characterized structural homologues. In addition, the structures presented here define requirements for the design of artificial EGF-sequestering proteins that would be valuable anti-cancer therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Argos–Spitz complex.
Figure 2: Argos has three similar domains that resemble the three-finger toxin fold of TGF-β receptors.
Figure 3: Spitz-binding interactions.
Figure 4: Argos, EGFR and structural homologues entrap the EGF domain with two binding sites.

Accession codes

Primary accessions

Protein Data Bank

References

  1. Holbro, T. & Hynes, N. E. ErbB receptors: directing key signaling networks throughout life. Annu. Rev. Pharmacol. Toxicol. 44, 195–221 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Shilo, B. Z. Regulating the dynamics of EGF receptor signaling in space and time. Development 132, 4017–4027 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Rev. Cancer 5, 341–354 (2005)

    Article  CAS  Google Scholar 

  4. Freeman, M., Klambt, C., Goodman, C. S. & Rubin, G. M. The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell 69, 963–975 (1992)

    Article  CAS  PubMed  Google Scholar 

  5. Klein, D. E., Nappi, V. M., Reeves, G. T., Shvartsman, S. Y. & Lemmon, M. A. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration. Nature 430, 1040–1044 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kretzschmar, D. et al. giant lens, a gene involved in cell determination and axon guidance in the visual system of Drosophila melanogaster . EMBO J. 11, 2531–2539 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsetlin, V. Snake venom α-neurotoxins and other ‘three-finger’ proteins. Eur. J. Biochem. 264, 281–286 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. Greenwald, J., Fischer, W. H., Vale, W. W. & Choe, S. Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase. Nature Struct. Biol. 6, 18–22 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Barinka, C. et al. Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J. Mol. Biol. 363, 482–495 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dauter, Z., Dauter, M. & Rajashankar, K. R. Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr. D Biol. Crystallogr. 56, 232–237 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, C. & Kim, S.-H. The anatomy of protein β-sheet topology. J. Mol. Biol. 299, 1075–1089 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  CAS  PubMed  Google Scholar 

  13. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Allendorph, G. P., Vale, W. W. & Choe, S. Structure of the ternary signaling complex of a TGF-β superfamily member. Proc. Natl Acad. Sci. USA 103, 7643–7648 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alvarado, D., Evans, T. A., Sharma, R., Lemmon, M. A. & Duffy, J. B. Argos mutants define an affinity threshold for spitz inhibition in vivo . J. Biol. Chem. 281, 28993–29001 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Garrett, T. P. J. et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell 110, 763–773 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993)

    Article  CAS  PubMed  Google Scholar 

  19. Huai, Q. et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science 311, 656–659 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Rösel, M., Claas, C., Seiter, S., Herlevsen, M. & Zöller, M. Cloning and functional characterization of a new phosphatidyl-inositol anchored molecule of a metastasizing rat pancreatic tumor. Oncogene 17, 1989–2002 (1998)

    Article  PubMed  Google Scholar 

  21. Temerinac, S. et al. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in polycythemia rubra vera. Blood 95, 2569–2576 (2000)

    CAS  PubMed  Google Scholar 

  22. Hansen, L. V., Laerum, O. D., Illemann, M., Nielsen, B. S. & Ploug, M. Altered expression of the urokinase receptor homologue, C4.4A, in invasive areas of human esophageal squamous cell carcinoma. Int. J. Cancer 122, 734–741 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Kenny, P. A. & Bissell, M. J. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J. Clin. Invest. 117, 337–345 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, B. B. et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10, 39–50 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fujimoto, N. et al. High expression of ErbB family members and their ligands in lung adenocarcinomas that are sensitive to inhibition of epidermal growth factor receptor. Cancer Res. 65, 11478–11485 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Hynes, N. E. & Schlange, T. Targeting ADAMS and ERBBs in lung cancer. Cancer Cell 10, 7–11 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Borrell-Pagès, M., Rojo, F., Albanell, J., Baselga, J. & Arribas, J. TACE is required for the activation of the EGFR by TGF-α in tumors. EMBO J. 22, 1114–1124 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  29. CCP4 (Collaborative Computational Project Number 4). The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994)

  30. Lu, H. S. et al. Crystal structure of human epidermal growth factor and its dimerization. J. Biol. Chem. 276, 34913–34917 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. Miura, G. I. et al. Palmitoylation of the EGFR ligand Spitz by Rasp increases Spitz activity by restricting its diffusion. Dev. Cell 10, 167–176 (2006)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  32. Iwaki, T., Figuera, M., Ploplis, V. A. & Castellino, F. J. Rapid selection of Drosophila S2 cells with the puromycin resistance gene. Biotechniques 35, 482–486 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for phasing with SHELX programs. J. Appl. Cryst. 37, 843–844 (2004)

    Article  CAS  Google Scholar 

  35. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002)

    Article  PubMed  Google Scholar 

  36. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005)

    Article  PubMed  Google Scholar 

  37. Hayward, S. & Lee, R. A. Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J. Mol. Graph. Model. 21, 181–183 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, Palo Alto, CA, 2002)

    Google Scholar 

Download references

Acknowledgements

We thank members of the Lemmon and Ferguson laboratories, G. Van Duyne and J. Shorter for advice and critical reading of the manuscript. This work was supported by grants from the National Institutes of Health (to M.A.L.) and the US Army Breast Cancer Research Program (to D.E.K. and M.A.L.).

Author Contributions D.E.K. and M.A.L. conceived and designed the project. D.E.K. was responsible for all construct design and execution of protein biochemistry, crystallization, and data collection. D.E.K. solved and refined the Argos217–SpitzEGF complex structure. S.E.S. solved and refined the structures of uncomplexed Argos217 and SpitzEGF by molecular replacement using datasets collected by D.E.K. K.N. helped with crystal manipulation and data collection. F.S. performed binding studies with Argos and Spitz variants, as well as analytical ultracentrifugation, directed by D.E.K. D.E.K. and M.A.L. interpreted data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Lemmon.

Additional information

Coordinates have been deposited in the Protein Data Bank under codes 3CA7 (SpitzEGF), 3C9A (Argos217–SpitzEGF complex), and 3CGU (Argos217 alone).

Supplementary information

Supplementary Information

The file contains Supplementary Discussion, Supplementary Figures S1-S7, and Supplementary Table 1 (PDF 5693 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D., Stayrook, S., Shi, F. et al. Structural basis for EGFR ligand sequestration by Argos. Nature 453, 1271–1275 (2008). https://doi.org/10.1038/nature06978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06978

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing