Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution

Abstract

Evolutionary novelties in the skeleton are usually expressed as changes in the timing of growth of features intrinsically integrated at different hierarchical levels of development1. As a consequence, most of the shape-traits observed across species do vary quantitatively rather than qualitatively2, in a multivariate space3 and in a modularized way4,5. Because most phylogenetic analyses normally use discrete, hypothetically independent characters6, previous attempts have disregarded the phylogenetic signals potentially enclosed in the shape of morphological structures. When analysing low taxonomic levels, where most variation is quantitative in nature, solving basic requirements like the choice of characters and the capacity of using continuous, integrated traits is of crucial importance in recovering wider phylogenetic information. This is particularly relevant when analysing extinct lineages, where available data are limited to fossilized structures. Here we show that when continuous, multivariant and modularized characters are treated as such, cladistic analysis successfully solves relationships among main Homo taxa. Our attempt is based on a combination of cladistics, evolutionary-development-derived selection of characters, and geometric morphometrics methods. In contrast with previous cladistic analyses of hominid phylogeny, our method accounts for the quantitative nature of the traits, and respects their morphological integration patterns. Because complex phenotypes are observable across different taxonomic groups and are potentially informative about phylogenetic relationships, future analyses should point strongly to the incorporation of these types of trait.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic relationships among Homo species and other hominid taxa.
Figure 2: Reconstruction of ancestral states corresponding to the root and the main nodes of the maximum parsimony cladogram.

Similar content being viewed by others

References

  1. Olson, E. C. & Miller, R. L. Morphological Integration (Univ. Chicago Press, Chicago, 1958)

    Google Scholar 

  2. Rae, T. C. The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics 14, 221–228 (1998)

    Article  Google Scholar 

  3. MacLeod, N. & Forey, P. in Morphology, Shape and Phylogeny (eds MacLeod, N. & Forey, P.) 1–7 (Taylor & Francis, London, 2002)

    Google Scholar 

  4. Pigliucci, M. & Preston, K. Phenotypic Integration. Studying the Ecology and Evolution of Complex Phenotypes (Oxford Univ. Press, New York, 2004)

    Google Scholar 

  5. Strait, D. S. Integration, phylogeny, and the hominid cranial base. Am. J. Phys. Anthropol. 114, 273–297 (2001)

    Article  CAS  Google Scholar 

  6. Farris, J. S., Kluge, A. G. & Eckhardt, M. J. A numerical approach to phylogenetic systematics. Syst. Zool. 19, 172–189 (1970)

    Article  Google Scholar 

  7. Humphries, C. J. in Morphology, Shape and Phylogeny (eds MacLeod, N. & Forey, P.) 8–26 (Taylor & Francis, London, 2002)

    Book  Google Scholar 

  8. Polly, P. D. On the simulation of the evolution of morphological shape under selection and drift. Palaeontol. Electron. 7, 1–28 (2004)

    Google Scholar 

  9. Cheverud, J. M. Morphological integration in the saddle-back tamarin (Saguinas fuscicolis) cranium. Am. Nat. 145, 63–89 (1995)

    Article  Google Scholar 

  10. Curnoe, D. Problems with the use of cladistic analysis in palaeoanthropology. Homo 53, 225–234 (2003)

    Article  CAS  Google Scholar 

  11. Ackermann, R. R. & Cheverud, J. M. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 302–319 (Oxford Univ. Press, Oxford, 2004)

    Google Scholar 

  12. Skelton, R. R. & McHenry, H. M. Evolutionary relationships among early hominids. J. Hum. Evol. 23, 309–349 (1992)

    Article  Google Scholar 

  13. Zelditch, M. L., Swiderski, D. L., Sheets, H. D. & Fink, W. L. Geometric Morphometrics for Biologists (Elsevier, London, 2004)

    MATH  Google Scholar 

  14. Lieberman, D. E., McBratney, B. M. & Krovitz, G. The evolution and development of cranial form in Homo sapiens . Proc. Natl Acad. Sci. USA 99, 1134–1139 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Goloboff, P. A., Farris, J. S. & Nixon, K. TNT, a free program for phylogenetic analysis. Cladistics (in the press)

  16. Felsenstein, J. Inferring Phylogenies (Sinauer Associates, Sunderland, Massachusetts, 2004)

    Google Scholar 

  17. Felsenstein, J. PHYLIP (Phylogeny Inference Package) v.3.67 (Department of Genome Sciences, University of Washington, Seattle, 2007)

  18. Wood, B. A. & Collard, M. The human genus. Science 284, 65–71 (1999)

    Article  CAS  Google Scholar 

  19. Collard, M. & Wood, B. A. in Handbook of Paleoanthropology (eds Henke, W., Hardt, T. & Tattersall, I.) 1575–1610 (Springer, Berlin and Heidelberg, 2007)

    Book  Google Scholar 

  20. Strait, D. S., Grine, F. E. & Fleagle, J. G. in Handbook of Paleoanthropology (eds Henke, W., Hardt, T. & Tattersall, I.) 1782–1806 (Springer, Berlin and Heidelberg, 2007)

    Google Scholar 

  21. Vekua, A. et al. A new skull of early Homo from Dmanisi, Georgia. Science 297, 85–89 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Rightmire, G. P. in Handbook of Paleoanthropology (eds Henke, W., Hardt, T. & Tattersall, I.) 1695–1715 (Springer, Berlin and Heidelberg, 2007)

    Book  Google Scholar 

  23. Stringer, C. B. in Paleoclimate and Evolution with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 524–531 (Yale Univ. Press, New Haven, 1995)

    Google Scholar 

  24. Arsuaga, J. L., Martínez, I., García, A. & Lorenzo, C. The Sima de los Huesos crania (Sierra de Atapuerca, Spain). A comparative study. J. Hum. Evol. 33, 219–281 (1997)

    Article  CAS  Google Scholar 

  25. Lalueza-Fox, C. et al. Neandertal evolutionary genetics: mitochondrial DNA data from the Iberian Peninsula. Mol. Biol. Evol. 22, 1077–1081 (2005)

    Article  CAS  Google Scholar 

  26. Ramirez Rozzi, F. V. & Bermudez De Castro, J. M. Surprisingly rapid growth in Neanderthals. Nature 428, 936–939 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Strait, D. S. & Grine, F. E. Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa. J. Hum. Evol. 47, 399–452 (2004)

    Article  Google Scholar 

  28. Spoor, F. et al. Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya. Nature 448, 688–691 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Polly, P. D. Paleophylogeography: the tempo of geographic differentiation in marmots (Marmota). J. Mammal. 84, 369–384 (2003)

    Article  Google Scholar 

  30. Goloboff, P. A., Farris, J. S. & Nixon, K. TNT: Tree analysis using New Technology v.1.1 (Willi Hennig Society, New York, 2008)

  31. Goloboff, P. A., Mattoni, C. I. & Quinteros, A. S. Continuous characters analyzed as such. Cladistics 22, 589–601 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Goloboff, M. Hernández, C. Lalueza, N. Martínez-Abadías, D. Pol and F. Ramírez-Rozzi for reading and discussing previous versions of this paper. We also thank R. E. Ambrosetto, R. Nicoletti and B. Nicoletti for their assistance during this work. The program TNT is freely available, thanks to a subsidy from the Willi Hennig Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando González-José.

Supplementary information

Supplementary information

The file contains Supplementary Figure 1 and Supplementary Data including the synapomorphies for the MP tree (pages 6-12), SI text file corresponding to Morphologika files for the traits: FCB_Morphologika file (pages 13-16), FR_Morphologika file (pages 17-22), NG_Morphologika file (pages 23-30), MA_Morphologika file (pages 31-41). (PDF 1464 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-José, R., Escapa, I., Neves, W. et al. Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution. Nature 453, 775–778 (2008). https://doi.org/10.1038/nature06891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06891

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing