Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CLEC5A is critical for dengue-virus-induced lethal disease

Abstract

Dengue haemorrhagic fever and dengue shock syndrome, the most severe responses to dengue virus (DV) infection, are characterized by plasma leakage (due to increased vascular permeability) and low platelet counts1,2. CLEC5A (C-type lectin domain family 5, member A; also known as myeloid DAP12-associating lectin (MDL-1))3 contains a C-type lectin-like fold similar to the natural-killer T-cell C-type lectin domains and associates with a 12-kDa DNAX-activating protein (DAP12)4 on myeloid cells. Here we show that CLEC5A interacts with the dengue virion directly and thereby brings about DAP12 phosphorylation. The CLEC5A–DV interaction does not result in viral entry but stimulates the release of proinflammatory cytokines. Blockade of CLEC5A–DV interaction suppresses the secretion of proinflammatory cytokines without affecting the release of interferon-α, supporting the notion that CLEC5A acts as a signalling receptor for proinflammatory cytokine release. Moreover, anti-CLEC5A monoclonal antibodies inhibit DV-induced plasma leakage, as well as subcutaneous and vital-organ haemorrhaging, and reduce the mortality of DV infection by about 50% in STAT1-deficient mice. Our observation that blockade of CLEC5A-mediated signalling attenuates the production of proinflammatory cytokines by macrophages infected with DV (either alone or complexed with an enhancing antibody) offers a promising strategy for alleviating tissue damage and increasing the survival of patients suffering from dengue haemorrhagic fever and dengue shock syndrome, and possibly even other virus-induced inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DV interacts with CLEC5A.
Figure 2: CLEC5A is essential for DV-induced DAP12 phosphorylation, but not for DV replication.
Figure 3: CLEC5A is critical for DV-mediated secretion of TNF-α but not that of IFN-α.
Figure 4: Anti-mCLEC5A mAbs prevents DV-induced vascular leakage and lethality in STAT1-deficient mice.

Similar content being viewed by others

References

  1. Wilder-Smith, A. & Schwartz, E. Dengue in travelers. N. Engl. J. Med. 353, 924–932 (2005)

    Article  CAS  Google Scholar 

  2. Mackenzie, J. S., Gubler, D. J. & Petersen, L. R. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Med. 10, S98–S109 (2004)

    Article  CAS  Google Scholar 

  3. Bakker, A. B., Baker, E., Sutherland, G. R., Phillips, J. H. & Lanier, L. L. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc. Natl Acad. Sci. USA 96, 9792–9796 (1999)

    Article  CAS  ADS  Google Scholar 

  4. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998)

    Article  CAS  ADS  Google Scholar 

  5. Pang, T., Cardosa, M. J. & Guzman, M. G. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever–dengue shock syndrome (DHF/DSS). Immunol. Cell Biol. 85, 43–45 (2007)

    Article  CAS  Google Scholar 

  6. Halstead, S. B. & O’Rourke, E. J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J. Exp. Med. 146, 201–217 (1977)

    Article  CAS  Google Scholar 

  7. Palucka, A. K. Dengue virus and dendritic cells. Nature Med. 6, 748–749 (2000)

    Article  CAS  Google Scholar 

  8. Wu, S. J. et al. Human skin Langerhans cells are targets of dengue virus infection. Nature Med. 6, 816–820 (2000)

    Article  CAS  Google Scholar 

  9. Palmer, D. R. et al. Differential effects of dengue virus on infected and bystander dendritic cells. J. Virol. 79, 2432–2439 (2005)

    Article  CAS  Google Scholar 

  10. Chen, Y. C. & Wang, S. Y. Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. J. Virol. 76, 9877–9887 (2002)

    Article  CAS  Google Scholar 

  11. Cook, D. N., Pisetsky, D. S. & Schwartz, D. A. Toll-like receptors in the pathogenesis of human disease. Nature Immunol. 5, 975–979 (2004)

    Article  CAS  Google Scholar 

  12. Klesney-Tait, J., Turnbull, I. R. & Colonna, M. The TREM receptor family and signal integration. Nature Immunol. 7, 1266–1273 (2006)

    Article  CAS  Google Scholar 

  13. Robinson, M. J., Sancho, D., Slack, E. C., LeibundGut-Landmann, S. & Reis e Sousa, C. Myeloid C-type lectins in innate immunity. Nature Immunol. 7, 1258–1265 (2006)

    Article  CAS  Google Scholar 

  14. Pokidysheva, E. et al. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124, 485–493 (2006)

    Article  CAS  Google Scholar 

  15. Brown, G. D. & Gordon, S. A new receptor for β-glucans. Nature 413, 36–37 (2001)

    Article  CAS  ADS  Google Scholar 

  16. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol. 79, 1223–1231 (2005)

    Article  CAS  Google Scholar 

  17. Mitchell, D. A., Fadden, A. J. & Drickamer, K. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J. Biol. Chem. 276, 28939–28945 (2001)

    Article  CAS  Google Scholar 

  18. Lozach, P. Y. et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J. Biol. Chem. 280, 23698–23708 (2005)

    Article  CAS  Google Scholar 

  19. Tassaneetrithep, B. et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197, 823–829 (2003)

    Article  CAS  Google Scholar 

  20. Johnson, A. J., Guirakhoo, F. & Roehrig, J. T. The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203, 241–249 (1994)

    Article  CAS  Google Scholar 

  21. Goncalvez, A. P., Engle, R. E., St Claire, M., Purcell, R. H. & Lai, C. J. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc. Natl Acad. Sci. USA 104, 9422–9427 (2007)

    Article  CAS  ADS  Google Scholar 

  22. Huang, K. J. et al. The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J. Immunol. 176, 2825–2832 (2006)

    Article  CAS  Google Scholar 

  23. Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996)

    Article  CAS  Google Scholar 

  24. Shresta, S. et al. Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J. Immunol. 175, 3946–3954 (2005)

    Article  CAS  Google Scholar 

  25. Arrighi, J. F. et al. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J. Virol. 78, 10848–10855 (2004)

    Article  CAS  Google Scholar 

  26. Lin, Y. L. et al. Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J. Virol. 72, 9729–9737 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shresta, S., Sharar, K. L., Prigozhin, D. M., Beatty, P. R. & Harris, E. Murine model for dengue virus-induced lethal disease with increased vascular permeability. J. Virol. 80, 10208–10217 (2006)

    Article  CAS  Google Scholar 

  28. Chang, Y. C. et al. Modulation of macrophage differentiation and activation by decoy receptor 3. J. Leukoc. Biol. 75, 486–494 (2004)

    Article  CAS  Google Scholar 

  29. Hsu, T. L. et al. Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J. Immunol. 168, 4846–4853 (2002)

    Article  CAS  Google Scholar 

  30. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. Nature Immunol. 4, 161–167 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W.-C. Yeh, C. Milner and J. Paulson for critical comments; N.-J. Chen, C.-H. Lin, Y-L. Lee and J.-J. Liang for technical assistance. Resources and collaborative efforts were provided by the RNAi Consortium, Academia Sinica, Taiwan, and the Consortium for Functional Glycomics funded by the National Institute of General Medical Sciences (GM62116). This work was supported mainly by the National Research Program for Genomic Medicine, National Science Council, Taiwan (NSC-95-3112-B-010-0171 and NSC 96-3112-B-010-2), and in part by the National Yang-Ming University, Taiwan (96A-D-D132 from the Ministry of Education), Taipei Veterans General Hospital (V97S5-001), and Academia Sinica.

Author Contributions S.-T.C. designed, performed and analysed experiments, and wrote the paper. Y.-L.L. designed, analysed experiments and wrote the paper. M.-T.H., M.-F.W. and S.-C.C. performed experiments. H.-Y.L., C.-K.L. and T.-W.C. provided materials and reagents. C.-H.W. analysed experiments. S.-L.H. designed and analysed experiments, and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shie-Liang Hsieh.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-3 and Supplementary Figures 1-8 with Legends. (PDF 2199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ST., Lin, YL., Huang, MT. et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453, 672–676 (2008). https://doi.org/10.1038/nature07013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07013

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing