Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Snowball Earth termination by destabilization of equatorial permafrost methane clathrate

Abstract

The start of the Ediacaran period is defined by one of the most severe climate change events recorded in Earth history—the recovery from the Marinoan ‘snowball’ ice age, 635 Myr ago (ref. 1). Marinoan glacial-marine deposits occur at equatorial palaeolatitudes2, and are sharply overlain by a thin interval of carbonate that preserves marine carbon and sulphur isotopic excursions of about -5 and +15 parts per thousand, respectively3,4,5; these deposits are thought to record widespread oceanic carbonate precipitation during postglacial sea level rise1,3,4. This abrupt transition records a climate system in profound disequilibrium3,6 and contrasts sharply with the cyclical stratigraphic signal imparted by the balanced feedbacks modulating Phanerozoic deglaciation. Hypotheses accounting for the abruptness of deglaciation include ice albedo feedback3, deep-ocean out-gassing during post-glacial oceanic overturn7 or methane hydrate destabilization8,9,10. Here we report the broadest range of oxygen isotope values yet measured in marine sediments (-25‰ to +12‰) in methane seeps in Marinoan deglacial sediments underlying the cap carbonate. This range of values is likely to be the result of mixing between ice-sheet-derived meteoric waters and clathrate-derived fluids during the flushing and destabilization of a clathrate field by glacial meltwater. The equatorial palaeolatitude implies a highly volatile shelf permafrost pool that is an order of magnitude larger than that of the present day. A pool of this size could have provided a massive biogeochemical feedback capable of triggering deglaciation and accounting for the global postglacial marine carbon and sulphur isotopic excursions, abrupt unidirectional warming, cap carbonate deposition, and a marine oxygen crisis. Our findings suggest that methane released from low-latitude permafrost clathrates therefore acted as a trigger and/or strong positive feedback for deglaciation and warming. Methane hydrate destabilization is increasingly suspected as an important positive feedback to climate change11,12,13 that coincides with critical boundaries in the geological record14,15 and may represent one particularly important mechanism active during conditions of strong climate forcing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographic examples and stratigraphic context for Reynella seep carbonates.
Figure 2: Values of δ 13 C and δ 18 O for Nuccaleena Formation and Reynella Member cements and veins.

Similar content being viewed by others

References

  1. Fairchild, I. J. & Kennedy, M. J. Neoproterozoic glaciation in the Earth system. J. Geol. Soc. Lond. 164, 895–921 (2007)

    Article  CAS  Google Scholar 

  2. Sohl, L. E., Christie-Blick, N. & Kent, D. V. Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia; implications for the duration of low-latitude glaciation in Neoproterozoic time. Geol. Soc. Am. Bull. 111, 1120–1139 (1999)

    Article  ADS  Google Scholar 

  3. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998)

    Article  CAS  ADS  Google Scholar 

  4. Knoll, A. H., Walter, M. R., Narbonne, G. M. & Christie-Blick, N. The Ediacaran Period: a new addition to the geologic time scale. Lethaia 39, 13–30 (2006)

    Article  Google Scholar 

  5. Halverson, G. P. & Hurtgen, M. T. Ediacaran growth of the marine sulfate reservoir. Earth Planet. Sci. Lett. 263, 32–44 (2007)

    Article  CAS  ADS  Google Scholar 

  6. Allen, P. A. & Hoffman, P. F. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433, 123–127 (2005)

    Article  CAS  ADS  Google Scholar 

  7. Grotzinger, J. P. & Knoll, A. H. Anomalous carbonate precipitates; is the Precambrian the key to the Permian? Palaios 10, 578–596 (1995)

    Article  CAS  ADS  Google Scholar 

  8. Jiang, G., Kennedy, M. J. & Christie-Blick, N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–826 (2003)

    Article  CAS  ADS  Google Scholar 

  9. Shields, G. A., Deynoux, M., Strauss, H., Paquet, H. & Nahon, D. Barite-bearing cap dolostones of the Taoudeni Basin, northwest Africa; sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciation. Precambr. Res. 153, 209–235 (2007)

    Article  CAS  ADS  Google Scholar 

  10. Kennedy, M. J., Christie-Blick, N. & Sohl, L. E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology 29, 443–446 (2001)

    Article  CAS  ADS  Google Scholar 

  11. Nisbet, E. G. The end of the ice age. Can. J. Earth Sci. 27, 148–157 (1990)

    Article  ADS  Google Scholar 

  12. MacDonald, G. J. Role of methane clathrates in past and future climates. Clim. Change 16, 247–281 (1990)

    Article  ADS  Google Scholar 

  13. Archer, D. Methane hydrate stability and anthropogenic climate change. Biogeosciences 4, 521–544 (2007)

    Article  CAS  ADS  Google Scholar 

  14. Kemp, D. B., Coe, A. L., Cohen, A. S. & Schwark, L. Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396–399 (2005)

    Article  CAS  ADS  Google Scholar 

  15. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    Article  ADS  Google Scholar 

  16. Preiss, W. V. The Adelaide Geosyncline, late Proterozoic stratigraphy, sedimentation, palaeontology, and tectonics. Bull. Geol. Surv. S. Aust. 53, 1–438 (1987)

    Google Scholar 

  17. Greinert, J., Bohrmann, G. & Suess, E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge; classification, distribution, and origin of authigenic lithologies. Geophys. Monogr. 124, 99–113 (2000)

    Google Scholar 

  18. Aiello, I. W., Garrison, R. E., Moore, J. C., Kastner, M. & Stakes, D. S. Anatomy and origin of carbonate structures in a Miocene cold-seep field. Geology 29, 1111–1114 (2001)

    Article  CAS  ADS  Google Scholar 

  19. Shields, G. & Veizer, J. Precambrian marine carbonate isotope database versions 1.1. Geochem. Geophys. Geosyst. 3, 1–12 (2002)

    Article  Google Scholar 

  20. Ritger, S., Carson, B. & Suess, E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin; with Suppl. Data 87–02. Geol. Soc. Am. Bull. 98, 147–156 (1987)

    Article  CAS  ADS  Google Scholar 

  21. Bowen, G. J. & Wilkinson, B. Spatial distribution of δ18O in meteoric precipitation. Geology 30, 315–318 (2002)

    Article  ADS  Google Scholar 

  22. Herbert, C. T. & Compton, J. S. Depositional environments of the Lower Permian Dwyka Diamictite and Prince Albert Shale inferred from the geochemistry of early diagenetic concretions, southwest Karoo Basin, South Africa. Sedim. Geol. 194, 263–277 (2007)

    Article  ADS  Google Scholar 

  23. Himmler, T., Freiwald, A., Stollhofen, H. & Peckmann, J. Late Carboniferous hydrocarbon-seep carbonates from the glaciomarine Dwyka Group, southern Namibia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 185–197 (2008)

    Article  Google Scholar 

  24. Williams, G. E. in Clastic Tidal Sedimentology (eds Smith, D. G., Reinson, G. E., Zaitlin, B. A. & Rahmani, R. A.) 161–178 (Canadian Society of Petroleum Geologists, Calgary, 1991)

    Google Scholar 

  25. Kvenvolden, K. A. Methane hydrate; a major reservoir of carbon in the shallow geosphere? Chem. Geol. 71, 41–51 (1988)

    Article  CAS  ADS  Google Scholar 

  26. Williams, G. E. Precambrian permafrost horizons as indicators of palaeoclimate. Precambr. Res. 32, 233–242 (1986)

    Article  ADS  Google Scholar 

  27. MacAyeal, D. R. Binge/Purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic Heinrich events. Paleoceanography 8, 775–784 (1993)

    Article  ADS  Google Scholar 

  28. Ridgwell, A. J., Kennedy, M. J. & Caldeira, K. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 302, 859–862 (2003)

    Article  CAS  ADS  Google Scholar 

  29. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007)

    Article  CAS  ADS  Google Scholar 

  30. Hoefs, J. Stable Isotope Geochemistry 55 (Springer, Berlin, 2004)

    Book  Google Scholar 

Download references

Acknowledgements

We thank the NSF and NASA Exobiology for funding, A. Derkowski and T. Bristow for assistance with clay mineralogy, D. Winter for replicate isotopic analyses and I. Fairchild for a review.

Author Contributions M.J.K. collected samples and wrote the manuscript; D.D.M. collected samples, performed geochemical analyses and wrote the supplemental section; C.v.d.B. collected samples. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kennedy.

Supplementary information

Supplementray Information

The file contains Supplementary Figure S1, Supplementary Tables S1-S2 and Supplementary Discussion. Figure S1 shows Reynella Siltstone XRD traces supporting the presence of smectite. Tables S1 & S2 provide isotopic data for Fig. 2 and quantitative mineralogy of Reynella Siltstone. Discussion text outlines probable isotopic and chemical effects of clathrate destabilization. (PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, M., Mrofka, D. & von der Borch, C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642–645 (2008). https://doi.org/10.1038/nature06961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06961

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing