Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A chemical approach to stem-cell biology and regenerative medicine

Abstract

An improved understanding of stem-cell and regenerative biology, as well as a better control of stem-cell fate, is likely to produce treatments for many devastating diseases and injuries. Chemical approaches are starting to have an increasingly important role in this young field. Attention has focused on chemical approaches that allow the precise manipulation of cells in vitro to obtain homogeneous cell types for cell-based therapies. Another promising approach is the development of conventional chemical and biological therapeutics to stimulate endogenous cells to regenerate. Such therapeutics can act on target cells or their niches in vivo to promote cell survival, proliferation, differentiation, reprogramming and homing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A screening approach.
Figure 2: Selected chemical compounds that regulate cell fate.
Figure 3: Therapeutic strategies for regenerative medicine.

Similar content being viewed by others

References

  1. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005). This paper reports a genome-wide location analysis of the genes Oct4, Sox2 and Nanog , and proposes a model of core ES-cell regulatory circuitry for maintaining the pluripotent state of ES cells.

    Article  CAS  Google Scholar 

  2. Lee, T. I. et al. Control of developmental regulator's by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  Google Scholar 

  3. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  4. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  ADS  Google Scholar 

  5. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  ADS  Google Scholar 

  6. Chen, S. B. et al. Self-renewal of embryonic stem cells by a small molecule. Proc. Natl Acad. Sci. USA 103, 17266–17271 (2006). This paper describes the identification of a novel synthetic small molecule that can maintain long-term self-renewal of mouse ES cells in the absence of feeder cells, serum, LIF, BMPs and WNT proteins.

    Article  CAS  ADS  Google Scholar 

  7. Ludwig, T. E. et al. Derivation of human embryonic stem cells in defined conditions. Nature Biotechnol. 24, 185–187 (2006).

    Article  CAS  Google Scholar 

  8. Yao, S. et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl Acad. Sci. USA 103, 6907–6912 (2006).

    Article  CAS  ADS  Google Scholar 

  9. D'Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnol. 24, 1392–1401 (2006). This paper elegantly describes a directed, stepwise differentiation of human ES cells into functional pancreatic hormone-expressing endocrine cells.

    Article  CAS  Google Scholar 

  10. Chen, S. B., Zhang, Q. S., Wu, X., Schultz, P. G. & Ding, S. Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc. 126, 410–411 (2004).

    Article  CAS  Google Scholar 

  11. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). This paper was the first to demonstrate that mouse somatic cells can be reprogrammed to become iPS cells by viral transduction of four defined factors: OCT4, SOX2, KLF4 and Myc.

    Article  CAS  Google Scholar 

  12. Ding, S. & Schultz, P. G. A role for chemistry in stem cell biology. Nature Biotechnol. 22, 833–840 (2004).

    Article  CAS  Google Scholar 

  13. Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005).

    Article  CAS  Google Scholar 

  14. Shamblott, M. J. et al. Derivation of pluripotent stem cells horn cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998).

    Article  CAS  ADS  Google Scholar 

  15. Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012 (2004).

    Article  CAS  Google Scholar 

  16. Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203 (2006).

    Article  CAS  ADS  Google Scholar 

  17. Brons, I. G. M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  ADS  Google Scholar 

  18. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007). References 17 and 18 report the derivation of pluripotent epiblast stem cells from post-implantation, epiblast-stage embryos of mice and rats.

    Article  CAS  ADS  Google Scholar 

  19. Wu, H. et al. Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc. Natl Acad. Sci. USA 104, 13821–13826 (2007).

    Article  CAS  ADS  Google Scholar 

  20. Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    Article  CAS  Google Scholar 

  21. Vallier, L., Reynolds, D. & Pederson, R. A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403–421 (2004).

    Article  CAS  Google Scholar 

  22. Xu, R. H. et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods 2, 185–190 (2005).

    Article  CAS  Google Scholar 

  23. Beattie, G. M. et al. Activin A maintains pluripotency of human embryonic stem cells in the sbsence of feeder layers. Stem Cells 23, 489–495 (2005).

    Article  CAS  Google Scholar 

  24. Lu, J., Hou, R., Booth, C. J., Yang, S.-H. & Snyder, M. Defined culture conditions of human embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 5688–5693 (2006).

    Article  CAS  ADS  Google Scholar 

  25. Wang, L. et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110, 4111–4119 (2007).

    Article  CAS  Google Scholar 

  26. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnol. 25, 681–686 (2007).

    Article  CAS  Google Scholar 

  27. Conti, L. et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PloS Biol. 3, 1594–1606 (2005).

    Article  CAS  Google Scholar 

  28. Qyang, Y. et al. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/β-catenin pathway. Cell Stem Cell 1, 165–179 (2007).

    Article  CAS  Google Scholar 

  29. Moretti, A. et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006).

    Article  CAS  Google Scholar 

  30. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  Google Scholar 

  31. Perrier, A. L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA 101, 12543–12548 (2004).

    Article  CAS  ADS  Google Scholar 

  32. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  Google Scholar 

  33. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnol. 21, 183–186 (2003).

    Article  CAS  Google Scholar 

  34. Li, X. J. et al. Specification of motoneurons from human embryonic stem cells. Nature Biotechnol. 23, 215–221 (2005).

    Article  Google Scholar 

  35. Kattman, S. J., Huber, T. L. & Keller, G. M. Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11, 723–732 (2006).

    Article  CAS  Google Scholar 

  36. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnol. 25, 1015–1024 (2007).

    Article  CAS  Google Scholar 

  37. D'Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnol. 23, 1534–1541 (2005).

    Article  CAS  Google Scholar 

  38. Warashina, M. et al. A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew. Chemie Int. Edn Engl. 45, 591–593 (2006).

    Article  CAS  Google Scholar 

  39. Diamandis, P. et al. Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chem. Biol. 3, 268–273 (2007).

    Article  CAS  Google Scholar 

  40. Saxe, J. P. et al. A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem. Biol. 14, 1019–1030 (2007).

    Article  CAS  Google Scholar 

  41. Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. & Gage, F. H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl Acad. Sci. USA 101, 16659–16664 (2004).

    Article  CAS  ADS  Google Scholar 

  42. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    Article  CAS  ADS  Google Scholar 

  43. Hochedlinger, K. & Jaenisch, R. Nuclear reprogramming and pluripotency. Nature 441, 1061–1067 (2006).

    Article  CAS  ADS  Google Scholar 

  44. Eggan, E. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    Article  CAS  ADS  Google Scholar 

  45. Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002).

    Article  CAS  ADS  Google Scholar 

  46. Do, J. T. & Scholer, H. R. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22, 941–949 (2004).

    Article  CAS  Google Scholar 

  47. Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005).

    Article  CAS  ADS  Google Scholar 

  48. Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477 (2007).

    Article  CAS  ADS  Google Scholar 

  49. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nature Immunol. 8, 463–470 (2007).

    Article  CAS  Google Scholar 

  50. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  ADS  Google Scholar 

  51. Shen, C. N., Slack, J. M. W. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol. 2, 879–887 (2000).

    Article  CAS  Google Scholar 

  52. Egli, D., Rosains, J., Birkhoff, G. & Eggan, K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447, 679–685 (2007).

    Article  CAS  ADS  Google Scholar 

  53. Byrne, J. A. et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450, 497–502 (2007).

    Article  CAS  ADS  Google Scholar 

  54. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    Article  CAS  Google Scholar 

  55. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  ADS  Google Scholar 

  56. Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnol. 25, 1177–1181 (2007).

    Article  CAS  Google Scholar 

  57. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  Google Scholar 

  58. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  59. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  ADS  Google Scholar 

  60. Zhang, F., Pomerantz, J. H., Sen, G., Palermo, A. T., & Blau, H. M. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc. Natl Acad. Sci. USA 104, 4395–400 (2007).

    Article  CAS  ADS  Google Scholar 

  61. Horb, M. E., Shen, C. N., Tosh, D. & Slack, J. M. W. Experimental conversion of liver to pancreas. Curr. Biol. 13, 105–115 (2003).

    Article  CAS  Google Scholar 

  62. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  63. Chen, S. B. et al. Reversine increases the plasticity of lineage-committed mammalian cells. Proc. Natl Acad. Sci. USA 104, 10482–10487 (2007).

    Article  CAS  ADS  Google Scholar 

  64. North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007). This paper describes a chemical screen in zebrafish that led to the identification of PGE 2 as a potent regulator of vertebrate HSC homeostasis.

    Article  CAS  ADS  Google Scholar 

  65. Zhang, Q. S. et al. Small-molecule synergist of the Wnt–β-catenin signaling pathway. Proc. Natl Acad. Sci. USA 104, 7444–7448 (2007).

    Article  CAS  ADS  Google Scholar 

  66. Adams, G. B. et al. Therapeutic targeting of a stem cell niche. Nature Biotechnol. 25, 238–243 (2007). This paper provides a proof-of-principle demonstration that targeting stem-cell niches in vivo by conventional therapeutics can enhance stem-cell function and is an attractive strategy for regenerative medicine.

    Article  CAS  Google Scholar 

  67. Koprivica, V. et al. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310, 106–110 (2005).

    Article  CAS  ADS  Google Scholar 

  68. Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature doi:10.1038/nature06968 (in the press).

Download references

Acknowledgements

We thank members of the Ding laboratory for stimulating work and discussions. S.D. is supported by funding from the Scripps Research Institute, the National Institutes of Health (grant numbers MH074404, HD053759, HL084295 and HD058110), the Juvenile Diabetes Research Foundation and the California Institute of Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

S.D. is a founder of Fate Therapeutics.

Additional information

Correspondence should be addressed to S.D. (sding@scripps.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Shi, Y. & Ding, S. A chemical approach to stem-cell biology and regenerative medicine. Nature 453, 338–344 (2008). https://doi.org/10.1038/nature07042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07042

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing