Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall

Abstract

One of the most dramatic perturbations to the Earth system during the past 100 million years was the rapid onset of Antarctic glaciation near the Eocene/Oligocene epoch boundary1,2,3 (34 million years ago). This climate transition was accompanied3 by a deepening of the calcite compensation depth—the ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution. Changes in the global carbon cycle4, rather than changes in continental configuration5, have recently been proposed as the most likely root cause of Antarctic glaciation, but the mechanism linking glaciation to the deepening of calcite compensation depth remains unclear. Here we use a global biogeochemical box model to test competing hypotheses put forward to explain the Eocene/Oligocene transition. We find that, of the candidate hypotheses, only shelf to deep sea carbonate partitioning is capable of explaining the observed changes in both carbon isotope composition and calcium carbonate accumulation at the sea floor. In our simulations, glacioeustatic sea-level fall associated with the growth of Antarctic ice sheets permanently reduces global calcium carbonate accumulation on the continental shelves, leading to an increase in pelagic burial via permanent deepening of the calcite compensation depth. At the same time, fresh limestones are exposed to erosion, thus temporarily increasing global river inputs of dissolved carbonate and increasing seawater δ13C. Our work sheds new light on the mechanisms linking glaciation and ocean acidity change across arguably the most important climate transition of the Cenozoic era.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Our global biogeochemical box model.
Figure 2: Model results simulating competing hypotheses and comparison to available data.

Similar content being viewed by others

References

  1. Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the icehouse: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. 96, 6829–6849 (1991)

    Article  ADS  Google Scholar 

  2. Zachos, J. C., Quinn, T. M. & Salamy, K. A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Palaeoceanography 11, 251–266 (1996)

    Article  ADS  Google Scholar 

  3. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    Article  ADS  CAS  Google Scholar 

  4. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica triggered by declining atmospheric CO2 . Nature 421, 245–249 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Kennett, J. P. & Shackleton, N. J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. Nature 260, 513–515 (1976)

    Article  ADS  CAS  Google Scholar 

  6. Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E. & Roberts, A. P. Continental ice in Greenland during the Eocene and Oligocene. Nature 446, 176–179 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Edgar, K. M., Wilson, P. A., Sexton, P. S. & Suganuma, Y. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature 448, 908–911 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Lyle, M., Gibbs, S., Moore, T. C. & Rea, D. K. Late Oligocene initiation of the Antarctic Circumpolar Current: Evidence from the South Pacific. Geology 35, 691–694 (2007)

    Article  ADS  Google Scholar 

  10. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Salamy, K. A. & Zachos, J. C. Latest Eocene-Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 61–77 (1999)

    Article  Google Scholar 

  12. Olivarez Lyle, A. & Lyle, M. W. Missing organic carbon in Eocene marine sediments: is metabolism the biological feedback that maintains end-member climates? Paleoceanography 21 PA2007 10.1029/2005PA001230 (2006)

    Article  ADS  Google Scholar 

  13. Zachos, J. C. & Kump, L. R. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Glob. Planet. Changes 47, 51–66 (2005)

    Article  ADS  Google Scholar 

  14. Zachos, J. C., Opdyke, B. N., Quinn, T. M., Jones, C. E. & Hallid, A. N. Early cenozoic glaciation, Antarctic weathering, and seawater 87Sr/86Sr: is there a link? Chem. Geol. 161, 165–180 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Ravizza, G. E. & Peucker-Ehrenbrinck, F. The marine 187Os/188Os record of the Eocene-Oligocene transition: the interplay of weathering and glaciation. Earth Planet. Sci. Lett. 210, 151–165 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Kump, L. R. & Arthur, M. A. in Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.) 399–426 (Plenum, New York, 1997)

    Book  Google Scholar 

  17. Opdyke, B. N. & Wilkinson, B. H. Surface area control of shallow cratonic to deep marine carbonate accumulation. Paleoceanography 3, 685–703 (1988)

    Article  ADS  Google Scholar 

  18. Walker, J. C. G. & Kasting, J. F. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 151–189 (1992)

    Article  CAS  Google Scholar 

  19. Diester-Haass, L. Middle Eocene to early Oligocene paleoceanography of the Antarctic Ocean (Maud Rise, ODP Leg 113, Site 689): change from a low to a high productivity ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 113, 311–334 (1995)

    Article  Google Scholar 

  20. Kennett, J. P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoclimate. J. Geophys. Res. 82, 3843–3860 (1977)

    Article  ADS  CAS  Google Scholar 

  21. Tyrrell, T. The relative influence of nitrogen and phosphorus on oceanic primary prduction. Nature 400, 525–531 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Pekar, S. F., Christie-Blick, N., Kominz, M. A. & Miller, K. G. Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene. Geology 30, 903–906 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Gibbs, M. T. & Kump, L. R. Global chemical erosion during the last glacial maximum and the present: sensitivity to changes in lithology and hydrology. Paleoceanography 9, 529–543 (1994)

    Article  ADS  Google Scholar 

  24. Munhoven, G. Glacial-intergalacial changes of continental weathering: estimates of the related CO2 and HCO3- flux variations and their uncertainties. Glob. Planet. Changes 33, 155–176 (2002)

    Article  ADS  Google Scholar 

  25. Milliman, J. D. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob. Biogeochem. Cycles 7, 927–957 (1993)

    Article  CAS  Google Scholar 

  26. Swart, P. K. & Eberli, G. The nature of δ13C of periplatform sediments: Implications for stratigraphy and the global carbon cycle. Sedim. Geol. 175, 115–129 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Rea, D. K. & Lyle, M. W. Paleogene calcite compensation depth in the eastern subtropical Pacific: answers and questions. Paleoceanography 20 PA1012 10.1029/2004PA001064 (2005)

    Article  ADS  Google Scholar 

  28. Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006)

    Article  ADS  Google Scholar 

  29. Zeebe, R. & Westbroek, P. A simple model for the CaCO3 saturation state of the ocean: The “Strangelove”, the “Neritan”, and the “Cretan” ocean. Geochem. Geophys. Geosyst. 4 10.1029/2003GC000538 (2003)

  30. Dupont-Nivet, G. et al. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, 635–638 (2007)

    Article  CAS  Google Scholar 

  31. Chuck, A., Tyrrell, T., Totterdell, I. J. & Holligan, P. M. The oceanic response to carbon emissions over the next century: investigation using three ocean carbon cycle models. Tellus B 57, 70–86 (2005)

    Article  ADS  Google Scholar 

  32. Jansen, H., Zeebe, R. E. & Wolf-Gladrow, D. A. Modeling the dissolution of settling CaCO3 in the ocean. Glob. Biogeochem. Cycles 16 10.1029/2000GB001279 (2002)

  33. Archer, D. A data-driven model of the calcite lysocline. Glob. Biogeochem. Cycles 10, 511–526 (1996)

    Article  ADS  CAS  Google Scholar 

  34. Sigman, D. M., McCorkle, D. C. & Martin, W. R. The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes. Glob. Biogeochem. Cycles 12, 409–427 (1998)

    Article  ADS  CAS  Google Scholar 

  35. Broecker, W. S. & Peng, T.-H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1, 15–29 (1987)

    Article  ADS  CAS  Google Scholar 

  36. Ridgwell, A. et al. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences 4, 87–104 (2007)

    Article  ADS  CAS  Google Scholar 

  37. Rohling, E. J. & Cooke, S. in Modern Foraminifera (ed. Sen Gupta, B. K.) 239–258 (Kluwer Academic, Dordrecht, 1999)

    Book  Google Scholar 

  38. Spero, H. J., Bijma, J., Lea, D. W. & Bemis, B. E. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390, 497–500 (1997)

    Article  ADS  CAS  Google Scholar 

  39. Hofmann, M., Broecker, W. S. & Lynch-Stieglitz, J. Influence of a [CO2(aq)] dependent biological C-isotope fractionation on glacial 13C/12C ratios in the ocean. Glob. Biogeochem. Cycles 13, 873–883 (1999)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Sexton for discussions. We gratefully acknowledge R. DeConto, J. Kasting, G. Munhoven, H. Pälike and J. Walker for their comments on various aspects of our model, K. Wirtz for support and the UK Natural Environment Research Council for funding. We also thank R. Zeebe for comments on the manuscript.

Author Contributions All three authors contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Merico.

Supplementary information

Supplementary information

The file contains Supplementary Notes, Supplementary Figures 1-6 with Legends, Supplementary Tables 1-3 and additional references (PDF 1365 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merico, A., Tyrrell, T. & Wilson, P. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall. Nature 452, 979–982 (2008). https://doi.org/10.1038/nature06853

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06853

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing