Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydrous silicate melt at high pressure

Abstract

The structure and physical properties of hydrous silicate melts and the solubility of water in melts over most of the pressure regime of Earth’s mantle (up to 136 GPa) remain unknown. At low pressure (up to a few gigapascals) the solubility of water increases rapidly with increasing pressure1, and water has a large influence on the solidus temperature, density2, viscosity3 and electrical conductivity. Here we report the results of first-principles molecular dynamics simulations of hydrous MgSiO3 melt. These show that pressure has a profound influence on speciation of the water component, which changes from being dominated by hydroxyls and water molecules at low pressure4 to extended structures at high pressure. We link this change in structure to our finding that the water–silicate system becomes increasingly ideal at high pressure: we find complete miscibility of water and silicate melt throughout almost the entire mantle pressure regime. On the basis of our results, we argue that a buoyantly stable melt at the base of the upper mantle would contain approximately 3 wt% water and have an electrical conductivity of 18 S m-1, and should therefore be detectable by means of electromagnetic sounding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and speciation of hydrous silicate melt.
Figure 2: H–O and O–Si coordination numbers.
Figure 3: Self-diffusion coefficient of hydrogen.
Figure 4: Density and partial molar volume of water.

Similar content being viewed by others

References

  1. Shen, A. H. & Keppler, H. Direct observation of complete miscibility in the albite-H2O system. Nature 385, 710–712 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Ochs, F. A. & Lange, R. A. The density of hydrous magmatic liquids. Science 283, 1314–1317 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Lange, R. A. The effect of H2O, CO2 and F on the density and viscosity of silicate melts. Rev. Mineral. 30, 331–369 (1994)

    CAS  Google Scholar 

  4. Stolper, E. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620 (1982)

    Article  ADS  CAS  Google Scholar 

  5. Panero, W. R. & Stixrude, L. P. Hydrogen incorporation in stishovite at high pressure and symmetric hydrogen bonding in delta-AlOOH. Earth Planet. Sci. Lett. 221, 421–431 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Pohlmann, M., Benoit, M. & Kob, W. First-principles molecular-dynamics simulations of a hydrous silica melt: Structural properties and hydrogen diffusion mechanism. Phys. Rev. B 70, 184209 (2004)

    Article  ADS  Google Scholar 

  7. Stixrude, L. & Karki, B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 310, 297–299 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Closmann, C. & Williams, Q. In-situ spectroscopic investigation of high-pressure hydrated (Mg,Fe)SiO3 glasses - OH vibrations as a probe of glass structure. Am. Mineral. 80, 201–212 (1995)

    Article  ADS  CAS  Google Scholar 

  9. Inoue, T. Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa. Phys. Earth Planet. Inter. 85, 237–263 (1994)

    Article  ADS  CAS  Google Scholar 

  10. Goldman, N., Fried, L. E., Kuo, I. F. W. & Mundy, C. J. Bonding in the superionic phase of water. Phys. Rev. Lett. 94, 217801 (2005)

    Article  ADS  Google Scholar 

  11. Greaves, G. N. & Ngai, K. L. Reconciling ionic-transport properties with atomic-structure in oxide glasses. Phys. Rev. B 52, 6358–6380 (1995)

    Article  ADS  CAS  Google Scholar 

  12. Song, T. R. A., Helmberger, D. V. & Grand, S. P. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427, 530–533 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Toffelmier, D. A. & Tyburczy, J. A. Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 447, 991–994 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  15. Ito, E. & Takahashi, E. Melting of peridotite at uppermost lower-mantle conditions. Nature 328, 514–517 (1987)

    Article  ADS  CAS  Google Scholar 

  16. Matsukage, K. N., Jing, Z. C. & Karato, S. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle. Nature 438, 488–491 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Sakamaki, T., Suzuki, A. & Ohtani, E. Stability of hydrous melt at the base of the Earth's upper mantle. Nature 439, 192–194 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Stalder, R., Ulmer, P., Thompson, A. B. & Gunther, D. High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contrib. Mineral. Petrol. 140, 607–618 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Kerridge, J. F. Carbon, hydrogen and nitrogen in carbonaceous chondrites - abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985)

    Article  ADS  CAS  Google Scholar 

  20. Hirschmann, M. M. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629–653 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Matsui, T. & Abe, Y. Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth. Nature 319, 303–305 (1986)

    Article  ADS  CAS  Google Scholar 

  22. Nosé, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  ADS  Google Scholar 

  23. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements. J. Phys. Condens. Matter 6, 8245–8257 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Mermin, N. D. Thermal properties of inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wentzcovitch, R. M., Martins, J. L. & Allen, P. B. Energy versus free-energy conservation in 1st-principles molecular-dynamics. Phys. Rev. B 45, 11372–11374 (1992)

    Article  CAS  Google Scholar 

  27. Zhang, Y. X. H2O in rhyolitic glasses and melts: Measurement, speciation, solubility, and diffusion. Rev. Geophys. 37, 493–516 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Bhattarai, D., Karki, B. B. & Stixrude, L. Space-time multiresolution atomistic visualization of MgO and MgSiO3 liquid data. Vis. Geosci. 11, 1–11 (2006)

    Article  Google Scholar 

  29. Zhang, Y. X. & Stolper, E. M. Water diffusion in a basaltic melt. Nature 351, 306–309 (1991)

    Article  ADS  CAS  Google Scholar 

  30. Pitzer, K. S. & Sterner, S. M. Equations of state valid continuously from zero to extreme pressures for H2O and CO2 . J. Chem. Phys. 101, 3111–3116 (1994)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Center for Computation & Technology at Louisiana State University for computing resources. This work was supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Stixrude.

Supplementary information

Supplementary information

This file contains Supplementary Figure S1a-d plus legend. (PDF 4053 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mookherjee, M., Stixrude, L. & Karki, B. Hydrous silicate melt at high pressure. Nature 452, 983–986 (2008). https://doi.org/10.1038/nature06918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06918

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing