Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integration of growth and specification in chick wing digit-patterning

Abstract

In the classical model of chick wing digit-patterning1, the polarizing region—a group of cells at the posterior margin of the early bud—produces a morphogen gradient, now known to be based on Sonic hedgehog (Shh)2,3, that progressively specifies anteroposterior positional identities in the posterior digit-forming region4. Here we add an integral growth component to this model by showing that Shh-dependent proliferation of prospective digit progenitor cells is essential for specifying the complete pattern of digits across the anteroposterior axis. Inhibiting Shh signalling in early wing buds reduced anteroposterior expansion, and posterior digits were lost because all prospective digit precursors formed anterior structures. Inhibiting proliferation also irreversibly reduced anteroposterior expansion, but instead anterior digits were lost because all prospective digit precursors formed posterior structures. When proliferation recovered in such wings, Shh transcription was maintained for longer than normal, suggesting that duration of Shh expression is controlled by a mechanism that measures proliferation. Rescue experiments confirmed that Shh-dependent proliferation controls digit number during a discrete time-window in which Shh-dependent specification normally occurs. Our findings that Shh signalling has dual functions that can be temporally uncoupled have implications for understanding congenital and evolutionary digit reductions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of chick wing digit-patterning.
Figure 2: Inhibiting Shh causes loss of posterior elements.
Figure 3: Inhibiting anteroposterior expansion causes loss of anterior elements.
Figure 4: Shh expression after growth arrest and Shh-mediated rescue of digit patterning.
Figure 5: Shh-dependent modulation of digit pattern.

Similar content being viewed by others

References

  1. Tickle, C., Summerbell, D. & Wolpert, L. Positional signalling and specification of digits in chick limb morphogenesis. Nature 254, 199–202 (1975)

    Article  CAS  ADS  Google Scholar 

  2. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993)

    Article  CAS  Google Scholar 

  3. Ros, M. A. et al. The chick oligozeugodactyly (ozd) mutant lacks sonic hedgehog function in the limb. Development 130, 527–537 (2003)

    Article  CAS  Google Scholar 

  4. Yang, Y. et al. Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124, 4393–4404 (1997)

    CAS  PubMed  Google Scholar 

  5. Wolpert, L. Positional information and the spatial pattern of cellular formation. J. Theor. Biol. 25, 1–47 (1969)

    Article  CAS  Google Scholar 

  6. Cooke, J. & Summerbell, D. Cell cycle and experimental pattern duplication in the chick wing during embryonic development. Nature 287, 697–701 (1980)

    Article  CAS  ADS  Google Scholar 

  7. Smith, J. C. & Wolpert, L. Pattern formation along the anteroposterior axis of the chick wing: the increase in width following a polarizing region graft and the effect of X-irradiation. J. Embryol. Exp. Morphol. 63, 127–144 (1981)

    CAS  PubMed  Google Scholar 

  8. Summerbell, D. The control of growth and the development of pattern across the anteroposterior axis of the chick limb bud. J. Embryol. Exp. Morphol. 63, 161–180 (1981)

    CAS  PubMed  Google Scholar 

  9. Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004)

    Article  CAS  Google Scholar 

  10. Vargesson, N. et al. Cell fate in the chick limb bud and relationship to gene expression. Development 124, 1909–1918 (1997)

    CAS  PubMed  Google Scholar 

  11. Scherz, P. J., McGlinn, E., Nissim, S. & Tabin, C. J. Extended exposure to Sonic hedgehog is required for patterning the posterior digits of the vertebrate limb. Dev. Biol. 308, 343–354 (2007)

    Article  CAS  Google Scholar 

  12. Roy, S. & Ingham, P. W. Hedgehogs tryst with the cell cycle. J. Cell Sci. 115, 4393–4397 (2002)

    Article  CAS  Google Scholar 

  13. Zwilling, E. & Hansborough, L. Interactions between limb bud ectoderm and mesoderm in the chick embryo. III. Experiments with polydactylous limbs. J. Exp. Zool. 132, 219–239 (1956)

    Article  Google Scholar 

  14. Davey, M. G. et al. The chicken talpid3 gene encodes a novel protein essential for Hedgehog signaling. Genes Dev. 20, 1365–1377 (2006)

    Article  CAS  Google Scholar 

  15. Ocker, M. & Schneider-Stock, R. Histone deacetylase inhibitors: signalling towards p21(cip1/waf1). Int. J. Biochem. Cell Biol. 39, 1367–1374 (2007)

    Article  CAS  Google Scholar 

  16. Alberch, P. & Gale, E. A. Size dependence during the development of the amphibian foot. Colchicine-induced digital loss and reduction. J. Embryol. Exp. Morphol. 76, 177–197 (1983)

    CAS  PubMed  Google Scholar 

  17. Gabriel, M. L. The effect of local applications of colchicine on Leghorn and polydactylous chick embryos. J. Exp. Zool. 101, 339–350 (1946)

    Article  CAS  Google Scholar 

  18. Ohsugi, K., Gardiner, D. M. & Bryant, S. V. Cell cycle length affects gene expression and pattern formation in limbs. Dev. Biol. 189, 13–21 (1997)

    Article  CAS  Google Scholar 

  19. Scherz, P. J., Harfe, B. D., McMahon, A. P. & Tabin, C. J. The limb bud Shh-Fgf feedback loop is terminated by expansion of former ZPA cells. Science 305, 396–399 (2004)

    Article  CAS  ADS  Google Scholar 

  20. Barnes, E. A., Kong, M., Ollendorff, V. & Donoghue, D. J. Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J. 20, 2214–2223 (2001)

    Article  CAS  Google Scholar 

  21. Sharony, R. et al. Preaxial ray reduction defects as part of valproic acid embryofetopathy. Prenat. Diagn. 13, 909–918 (1993)

    Article  CAS  Google Scholar 

  22. Phiel, C. J. et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734–36741 (2001)

    Article  CAS  Google Scholar 

  23. Alessandri, J. L. et al. Syndrome de Feingold. Arch. Pédiatr. 7, 637–640 (2000)

    Article  CAS  Google Scholar 

  24. Shapiro, M. D., Hanken, J. & Rosenthal, N. Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. J. Exp. Zool. 297B, 48–56 (2003)

    Article  Google Scholar 

  25. Smith, J. C. Evidence for a positional memory in the development of the chick wing bud. J. Embryol. Exp. Morphol. 52, 105–113 (1979)

    CAS  PubMed  Google Scholar 

  26. Nieto, A., Patel, K. & Wilkinson, D. G. in Methods in Cell Biology (ed. Bronner Fraser, M.) 219–235 (Academic, San Diego, 1996)

    Google Scholar 

  27. Drossopoulou, G. et al. A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signalling and Bmp signalling. Development 127, 1337–1348 (2000)

    CAS  PubMed  Google Scholar 

  28. Summerbell, D., Lewis, J. H. & Wolpert, L. Positional information in chick limb morphogenesis. Nature 244, 492–496 (1973)

    Article  CAS  ADS  Google Scholar 

  29. Saunders, J. W. & Gasseling, M. T. in Mesenchymal–Epithelial Interactions (eds Fleichmeyer, R. & Billingham, R. E.) 78–97 (Williams and Wilkins, Baltimore, 1968)

    Google Scholar 

  30. Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank: the Medical Research Council (C.T., M.T.) and the Royal Society (C.T., R.M. and Y.Y.) for funding; ARK Genomics (Edinburgh), the Biotechnology and Biological Science Research Council and the University of Manchester Institute of Science and Technology for EST clones; K. Ball for the p21cip1 vector; D. Burt for talpid3 embryos; J. Richman for Shh protein; R. Clarke for FACS. M.T. thanks A. Münsterberg for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryll Tickle.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-8 with Legends and Supplementary Tables 1-2. (PDF 1454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Towers, M., Mahood, R., Yin, Y. et al. Integration of growth and specification in chick wing digit-patterning. Nature 452, 882–886 (2008). https://doi.org/10.1038/nature06718

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06718

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing