Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superinsulator and quantum synchronization

Abstract

Synchronized oscillators are ubiquitous in nature1, and synchronization plays a key part in various classical and quantum phenomena. Several experiments2,3,4 have shown that in thin superconducting films, disorder enforces the droplet-like electronic texture—superconducting islands immersed into a normal matrix—and that tuning disorder drives the system from superconducting to insulating behaviour. In the vicinity of the transition, a distinct state4 forms: a Cooper-pair insulator, with thermally activated conductivity. It results from synchronization of the phase of the superconducting order parameter at the islands across the whole system5. Here we show that at a certain finite temperature, a Cooper-pair insulator undergoes a transition to a superinsulating state with infinite resistance. We present experimental evidence of this transition in titanium nitride films and show that the superinsulating state is dual to the superconducting state: it is destroyed by a sufficiently strong critical magnetic field, and breaks down at some critical voltage that is analogous to the critical current in superconductors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-dimensional Josephson junction array.
Figure 2: Conductivity in normal-insulating and superinsulating states.
Figure 3: Magnetic-field-tuned transition to superinsulating state.
Figure 4: Sketch of dual-phase diagrams for a superconductor and a superinsulator.

Similar content being viewed by others

References

  1. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Science (Cambridge Univ. Press, Cambridge, 2001)

    Book  Google Scholar 

  2. Kowal, D. & Ovadyahu, Z. Disorder induced granularity in an amorphous superconductor. Solid State Commun. 90, 783–786 (1994)

    Article  ADS  CAS  Google Scholar 

  3. Gantmakher, V. F., Golubkov, M. V., Lok, J. G. S. & Geim, A. K. Giant negative magnetoresistance of semi-insulating amorphous indium oxide films in strong magnetic field. Zh. Eksp. Teor. Fiz. 109, 1765–1778 (1996); JETP 82, 951–958 (1996)

    Google Scholar 

  4. Baturina, T. I., Mironov, A., Yu, Vinokur, V. M., Baklanov, M. R. & Strunk, C. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor-insulator transition in TiN thin films. Phys. Rev. Lett. 99, 257003 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Fistul, M. V., Vinokur, V. M. & Baturina, T. I. Collective Cooper-pair transport in the insulating state of Josephson junction arrays. Phys. Rev. Lett. 100, 086805 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Tinkham, M. Introduction to Superconductivity 2nd edn, Ch. 6 (McGraw-Hill, New York, 1996)

    Google Scholar 

  7. Beloborodov, I. S., Fominov, V., Lopatin, A. V. & Vinokur, V. M. Insulating state of granular superconductors in a strong-coupling regime. Phys. Rev. B 74, 014502 (2006)

    Article  ADS  Google Scholar 

  8. Lopatin, A. V. & Vinokur, V. M. Hopping transport in granular superconductors. Phys. Rev. B 75, 092201 (2007)

    Article  ADS  Google Scholar 

  9. Mooij, J. E. et al. Unbinding of charge-anticharge pairs in two-dimensional arrays of small tunnel junctions. Phys. Rev. Lett. 65, 645–649 (1990)

    Article  ADS  CAS  Google Scholar 

  10. Fazio, R. & Schön, G. Charge and vortex dynamics in arrays of tunnel junctions. Phys. Rev. Lett. 43, 5307–5320 (1991)

    ADS  CAS  Google Scholar 

  11. Averin, D. V. & Likharev, K. K. in Mesoscopic Phenomena in Solids (eds Altshuler, B. L. et al.) 173–271 (Elsevier, Amsterdam, 1991)

    Book  Google Scholar 

  12. Altland, A., Glazman, L. I., Kamenev, A. & Meyer, J. S. Inelastic electron transport in granular arrays. Ann. Phys. 321, 2566–2603 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Baturina, T. I., Strunk, C., Baklanov, M. R. & Satta, A. Quantum metallicity on the high-field side of the superconductor-insulator transition. Phys. Rev. Lett. 98, 127003 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Ingold, G.-L. & Nazarov in Single Charge Tunneling (eds Grabert, H. & Devoret, M. H.) Vol. 294 21–107 (NATO ASI Series B, Plenum, New York, 1991)

    Google Scholar 

  15. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics (Non-Relativistic Theory) Ch. 6 142–146 (Elsevier Science, Oxford, UK/ Burlington, Massachusetts, 2003)

    Google Scholar 

  16. Ingold. G.-L in Quantum Transport and Dissipation (eds Dittrich, T. et al.) Ch. 4 213–248 (Wiley-VCH, Weinheim, 1998)

    Google Scholar 

  17. Koval, Y., Fistul, M. V. & Ustinov, A. V. Enhancement of Josephson phase diffusion by microwaves. Phys. Rev. Lett. 93, 087004 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Matveev, K. A., Gisselfält, M., Glazman, L. I., Jonson, M. & Shekhter, R. I. Parity-induced suppression of the Coulomb blockade of Josephson tunneling. Phys. Rev. Lett. 70, 2940–2943 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Lotkhov, S. V., Bogoslovsky, S. A., Zorin, A. B. & Niemeyer, J. Cooper pair cotunneling in single charge transistors with dissipative electromagnetic environment. Phys. Rev. Lett. 91, 197002 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Efetov, K. B. & Tschersich, A. Coulomb effects in granular materials at not very low temperatures. Phys. Rev. B 67, 174205 (2003)

    Article  ADS  Google Scholar 

  21. José, J. V., Kadanoff, L. P., Kirkpatrick, S. & Nelson, D. R. Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217–1241 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Galperin, V. F. Gantmakher and A. Kamenev for discussions. This work was supported by the US Department of Energy Office of Science, Alexander von Humboldt Foundation, the Russian Foundation for Basic Research, the “Quantum Macrophysics” Program of the Russian Academy of Sciences, and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii M. Vinokur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinokur, V., Baturina, T., Fistul, M. et al. Superinsulator and quantum synchronization. Nature 452, 613–615 (2008). https://doi.org/10.1038/nature06837

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06837

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing