Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The unexpected origin of plasmaspheric hiss from discrete chorus emissions

Abstract

Plasmaspheric hiss1 is a type of electromagnetic wave found ubiquitously in the dense plasma region that encircles the Earth, known as the plasmasphere2. This important wave is known to remove3,4,5 the high-energy electrons that are trapped along the Earth’s magnetic field lines6, and therefore helps to reduce the radiation hazards to satellites and humans in space. Numerous theories to explain the origin of hiss have been proposed over the past four decades, but none have been able to account fully for its observed properties. Here we show that a different wave type called chorus7,8, previously thought to be unrelated to hiss, can propagate into the plasmasphere from tens of thousands of kilometres away, and evolve into hiss. Our new model naturally accounts for the observed frequency band of hiss, its incoherent nature, its day–night asymmetry in intensity, its association with solar activity and its spatial distribution. The connection between chorus and hiss is very interesting because chorus is instrumental in the formation of high-energy electrons outside the plasmasphere9, whereas hiss depletes these electrons at lower equatorial altitudes3,4.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of chorus into plasmaspheric hiss.
Figure 2: Penetration characteristics of chorus rays.
Figure 3: CRRES satellite data showing chorus and hiss emissions.

Similar content being viewed by others

References

  1. Thorne, R. M., Smith, E. J., Burton, R. K. & Holzer, R. E. Plasmaspheric hiss. J. Geophys. Res. 78, 1581–1595 (1973)

    Article  ADS  Google Scholar 

  2. Carpenter, D. L. & Park, C. G. What ionospheric workers should know about the plasmapause/plasmasphere. Rev. Geophys. 11, 133–154 (1973)

    Article  ADS  Google Scholar 

  3. Lyons, L. R., Thorne, R. M. & Kennel, C. F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77, 3455–3474 (1972)

    Article  ADS  Google Scholar 

  4. Abel, R. W. & Thorne, R. M. Electron scattering loss in Earth's inner magnetosphere. 1: Dominant physical processes. J. Geophys. Res. 103, 2385–2396 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Lyons, L. R. & Thorne, R. M. Equilibrium structure of radiation belt electrons. J. Geophys. Res. 78, 2142–2149 (1973)

    Article  ADS  Google Scholar 

  6. Van Allen, J. A. in Discovery of the Magnetosphere (eds Gillmor, C. S. & Spreiter, J. R.) History of Geophysics Vol. 7 235–251 (American Geophysical Union, Washington DC, 1997)

    Book  Google Scholar 

  7. Dunckel, N. & Helliwell, R. A. Whistler mode emissions on the Ogo 1 satellite. J. Geophys. Res. 74, 6371–6385 (1969)

    Article  ADS  Google Scholar 

  8. Russell, C. T., Holzer, R. E. & Smith, E. J. OGO 3 observations of ELF noise in the magnetosphere: 1. Spatial extent and frequency of occurrence. J. Geophys. Res. 74, 755–777 (1969)

    Article  ADS  Google Scholar 

  9. Horne, R. B. et al. Timescales for radiation belt electron acceleration by whistler mode chorus waves. J. Geophys. Res. 111 A03225 10.1029/2004JA010811 (2005)

    Article  ADS  Google Scholar 

  10. Taylor, W. W. L. & Gurnett, D. A. The morphology of VLF emissions observed with the Injun 3 satellite. J. Geophys. Res. 73, 5615–5626 (1968)

    Article  ADS  Google Scholar 

  11. Meredith, N. P. et al. Substorm dependence of plasmaspheric hiss. J. Geophys. Res. 109 A06209 10.1029/2004JA010387 (2004)

    Article  ADS  Google Scholar 

  12. Hayakawa, M. & Sazhin, S. S. Mid-latitude and plasmaspheric hiss: a review. Planet. Space Sci. 40, 1325–1338 (1992)

    Article  ADS  Google Scholar 

  13. Church, S. R. & Thorne, R. M. On the origin of plasmaspheric hiss: ray path integrated amplification. J. Geophys. Res. 88, 7941–7957 (1983)

    Article  ADS  Google Scholar 

  14. Sonwalkar, V. S. & Inan, U. S. Lightning as an embryonic source of VLF hiss. J. Geophys. Res. 94, 6986–6994 (1989)

    Article  ADS  Google Scholar 

  15. Draganov, A. B., Inan, U. S., Sonwalkar, V. S. & Bell, T. F. Magnetospherically reflected whistlers as a source of plasmaspheric hiss. J. Geophys. Res. 19, 233–236 (1992)

    Google Scholar 

  16. Bortnik, J., Inan, U. S. & Bell, T. F. Frequency-time spectra of magnetospherically reflecting whistlers in the plasmasphere. J. Geophys. Res. 108 (A1). 1030 10.1029/2002JA009387 (2003)

    Article  Google Scholar 

  17. Bortnik, J., Inan, U. S. & Bell, T. F. Energy distribution and lifetime of magnetospherically reflecting whistlers in the plasmasphere. J. Geophys. Res. 108 (A5). 1199 10.1029/2002JA009316 (2003)

    Article  Google Scholar 

  18. Green, J. L. et al. On the origin of whistler mode radiation in the plasmasphere. J. Geophys. Res. 110 A03201 10.1029/2004JA010495 (2005)

    Article  ADS  Google Scholar 

  19. Thorne, R. M., Horne, R. B. & Meredith, N. P. Comment on “On the origin of whistler mode radiation in the plasmasphere” by Green et al. J. Geophys. Res. 111 A09210 10.1029/2005JA011477 (2006)

    Article  ADS  Google Scholar 

  20. Green, J. L. et al. Reply to ‘Comment on “On the origin of whistler mode radiation in the plasmasphere” by Green et al.’ J. Geophys. Res. 111 A09211 10.1029/2006JA011622 (2006)

    Article  ADS  Google Scholar 

  21. Meredith, N. P. et al. Origins of plasmaspheric hiss. J. Geophys. Res. 111 A09217 10.1029/2006JA011707 (2006)

    Article  ADS  Google Scholar 

  22. Burtis, W. J. & Helliwell, R. A. Magnetospheric chorus: occurrence patterns and normalized frequency. Planet. Space Sci. 24, 1007–1024 (1976)

    Article  ADS  Google Scholar 

  23. Bortnik, J., Thorne, R. M. & Meredith, N. P. Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. J. Geophys. Res. 112 A08204 10.1029/2006JA012237 (2007)

    Article  ADS  Google Scholar 

  24. Santolik, O. et al. Propagation of whistler mode chorus to low altitudes: Spacecraft observations of structured ELF hiss. J. Geophys. Res. 111 A10208 10.1029/2005JA011462 (2006)

    Article  ADS  Google Scholar 

  25. Thorne, R. M. & Kennel, C. F. Quasi-trapped VLF propagation in the outer magnetosphere. J. Geophys. Res. 72, 857–870 (1967)

    Article  ADS  Google Scholar 

  26. Smith, E. J., Frandsen, A. M. A., Tsurutani, B. T., Thorne, R. M. & Chan, K. W. Plasmaspheric hiss intensity variations during magnetic storms. J. Geophys. Res. 79, 2507–2510 (1974)

    Article  ADS  Google Scholar 

  27. Thorne, R. M., Smith, E. J., Fiske, K. J. & Church, S. R. Intensity variation of ELF hiss and chorus during isolated substorms. Geophys. Res. Lett. 1, 193–196 (1974)

    Article  ADS  Google Scholar 

  28. Carpenter, D. L. & Anderson, R. R. An ISEE/whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res. 97 (A2). 1097–1108 (1992)

    Article  ADS  Google Scholar 

  29. Bell, T. F., Inan, U. S., Bortnik, J. & Scudder, J. D. The Landau damping of magnetospherically reflected whistlers within the plasmasphere. Geophys. Res. Lett. 29 15 10.1029/2002GL014752 (2002)

    Article  Google Scholar 

  30. Olson, W. P. & Pfitzer, K. Magnetospheric Magnetic Field Modelling. Annual Scientific Report, AFOSR Contract No. F44620–75-c-0033. (1977)

    Book  Google Scholar 

Download references

Acknowledgements

J.B. acknowledges support from the National Science Foundation’s (NSF) Geospace Environment Modeling (GEM) post-doctoral award and NASA, and R.M.T. acknowledges support from an NSF GEM grant. N.P.M. acknowledges support from the Natural Environment Research Council, UK. We thank Roger R. Anderson for provision of the CRRES plasma wave data used in this study.

Author Contributions J.B. performed all the calculations shown in the paper, wrote the manuscript and Supplementary Information section, and composed all the figures. R.M.T. provided consultation on the theoretical aspects of the work and manuscript writing. N.P.M. provided global models of CRRES/LEPA data used in the Landau damping calculations, the dynamic spectrogram shown in Fig. 3, and input into the manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Bortnik.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S3 with Legends, Supplementary Discussion sections 1 and 2 and additional references. The Supplementary Figures: illustrate the possible distribution of chorus wave power as a function of wave-normal angle, at the source location (Figure S1), and a single ray path that exhibits the long-lived ‘cyclic trajectory’ behaviour for the first 5 seconds of propagation (Figure S2) and its entire lifetime (Figure S3). The Supplementary Discussion sections 1 & 2: provide a historical context for our work in light of past research on hiss, various suggestions for origin mechanisms, and comments on related work (Section 1). Section 2 provides a discussion on the detailed microphysics of a single ray trajectory from its initiation to its ultimate demise, and gives the reader an intuitive sense for the processes resulting in the entry of certain chorus rays into the plasmasphere and the reason for their dramatically prolonged lifetimes. (PDF 629 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortnik, J., Thorne, R. & Meredith, N. The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature 452, 62–66 (2008). https://doi.org/10.1038/nature06741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06741

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing