Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A minimum column density of 1 g cm-2 for massive star formation

Abstract

Massive stars are very rare, but their extreme luminosities make them both the only type of young star we can observe in distant galaxies and the dominant energy sources in the Universe today. They form rarely because efficient radiative cooling keeps most star-forming gas clouds close to isothermal as they collapse, and this favours fragmentation into stars of one solar mass or lower1,2,3. Heating of a cloud by accreting low-mass stars within it can prevent fragmentation and allow formation of massive stars4,5, but the necessary properties for a cloud to form massive stars—and therefore where massive stars form in a galaxy—have not yet been determined. Here we show that only clouds with column densities of at least 1 g cm-2 can avoid fragmentation and form massive stars. This threshold, and the environmental variation of the stellar initial mass function that it implies, naturally explain the characteristic column densities associated with massive star clusters6,7,8,9 and the difference between the radial profiles of Hα and ultraviolet emission in galactic disks10,11. The existence of a threshold also implies that the initial mass function should show detectable variation with environment within the Galaxy, that the characteristic column densities of clusters containing massive stars should vary between galaxies, and that star formation rates in some galactic environments may have been systematically underestimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Critical and equilibrium light-to-mass ratios versus cloud column density.
Figure 2: Energy per unit mass radiated and formation time versus protostellar mass.
Figure 3: Threshold column density versus stellar mass.

Similar content being viewed by others

References

  1. Larson, R. B. Thermal physics, cloud geometry and the stellar initial mass function. Mon. Not. R. Astron. Soc. 359, 211–222 (2005)

    Article  ADS  Google Scholar 

  2. Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y. & Mac Low, M.-M. The stellar mass spectrum from non-isothermal gravoturbulent fragmentation. Astron. Astrophys. 435, 611–623 (2005)

    Article  CAS  ADS  Google Scholar 

  3. Bonnell, I. A., Clarke, C. J. & Bate, M. R. The Jeans mass and the origin of the knee in the IMF. Mon. Not. R. Astron. Soc. 368, 1296–1300 (2006)

    Article  ADS  Google Scholar 

  4. Krumholz, M. R. Radiation feedback and fragmentation in massive protostellar cores. Astrophys. J. 641, L45–L48 (2006)

    Article  ADS  Google Scholar 

  5. Krumholz, M. R., Klein, R. I. & McKee, C. F. Radiation-hydrodynamic simulations of collapse and fragmentation in massive protostellar cores. Astrophys. J. 656, 959–979 (2007)

    Article  ADS  Google Scholar 

  6. Plume, R., Jaffe, D. T., Evans, N. J., Martin-Pintado, J. & Gomez-Gonzalez, J. Dense gas and star formation: Characteristics of cloud cores associated with water masers. Astrophys. J. 476, 730–749 (1997)

    Article  CAS  ADS  Google Scholar 

  7. Mueller, K. E., Shirley, Y. L., Evans, N. J. & Jacobson, H. R. The physical conditions for massive star formation: Dust continuum maps and modeling. Astrophys. J. Suppl. Ser. 143, 469–497 (2002)

    Article  ADS  Google Scholar 

  8. Shirley, Y. L., Evans, N. J., Young, K. E., Knez, C. & Jaffe, D. T. A CS J = 5 → 4 mapping survey toward high-mass star-forming cores associated with water masers. Astrophys. J. Suppl. Ser. 149, 375–403 (2003)

    Article  CAS  ADS  Google Scholar 

  9. McKee, C. F. & Tan, J. C. The formation of massive stars from turbulent cores. Astrophys. J. 585, 850–871 (2003)

    Article  CAS  ADS  Google Scholar 

  10. Martin, C. L. & Kennicutt, R. C. Star formation thresholds in galactic disks. Astrophys. J. 555, 301–321 (2001)

    Article  CAS  ADS  Google Scholar 

  11. Boissier, S. et al. Radial variation of attenuation and star formation in the largest late-type disks observed with GALEX. Astrophys. J. Suppl. Ser. 173, 524–537 (2007)

    Article  CAS  ADS  Google Scholar 

  12. Heyer, M. H. & Brunt, C. M. The universality of turbulence in galactic molecular clouds. Astrophys. J. 615, L45–L48 (2004)

    Article  CAS  ADS  Google Scholar 

  13. Chakrabarti, S. & McKee, C. F. Far-infrared SEDs of embedded protostars and dusty galaxies. I. Theory for spherical sources. Astrophys. J. 631, 792–808 (2005)

    Article  CAS  ADS  Google Scholar 

  14. Neufeld, D. A., Lepp, S. & Melnick, G. J. Thermal balance in dense molecular clouds: Radiative cooling rates and emission-line luminosities. Astrophys. J. Suppl. Ser. 100, 132–147 (1995)

    Article  CAS  ADS  Google Scholar 

  15. Young, K. E., Lee, J.-E., Evans, N. J., Goldsmith, P. F. & Doty, S. D. Probing pre-protostellar cores with formaldehyde. Astrophys. J. 614, 252–266 (2004)

    Article  CAS  ADS  Google Scholar 

  16. Urban, A., Evans, N. J. & Doty, S. D. A parameter study of the dust and gas temperature in a field of young stars. Astrophys. J. (submitted); preprint at 〈http://arXiv.org/abs/0710.3906〉 (2007)

  17. Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001)

    Article  ADS  Google Scholar 

  18. Wu, J. et al. Connecting dense gas tracers of star formation in our galaxy to high-Z star formation. Astrophys. J. 635, L173–L176 (2005)

    Article  CAS  ADS  Google Scholar 

  19. Chabrier, G. in The Initial Mass Function 50 Years Later (ed. Corbelli, E., Palla, F. & Zinnecker, H.) 41–50 (Springer, Dordrecht, 2005)

    Book  Google Scholar 

  20. Tan, J. C., Krumholz, M. R. & McKee, C. F. Equilibrium star cluster formation. Astrophys. J. 641, L121–L124 (2006)

    Article  ADS  Google Scholar 

  21. Krumholz, M. R. & Tan, J. C. Slow star formation in dense gas: Evidence and implications. Astrophys. J. 654, 304–315 (2007)

    Article  CAS  ADS  Google Scholar 

  22. Krumholz, M. R. & McKee, C. F. A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630, 250–268 (2005)

    Article  ADS  Google Scholar 

  23. Bonnell, I. A., Vine, S. G. & Bate, M. R. Massive star formation: nurture, not nature. Mon. Not. R. Astron. Soc. 349, 735–741 (2004)

    Article  ADS  Google Scholar 

  24. Motte, F. et al. The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X. Astron. Astrophys. 476, 1243–1260 (2007)

    Article  CAS  ADS  Google Scholar 

  25. Braine, J., Ferguson, A. M. N., Bertoldi, F. & Wilson, C. D. The detection of molecular gas in the outskirts of NGC 6946. Astrophys. J. 669, L73–L76 (2007)

    Article  CAS  ADS  Google Scholar 

  26. Parravano, A., Hollenbach, D. J. & McKee, C. F. Time dependence of the ultraviolet radiation field in the local interstellar medium. Astrophys. J. 584, 797–817 (2003)

    Article  ADS  Google Scholar 

  27. Matzner, C. D. & McKee, C. F. Efficiencies of low-mass star and star cluster formation. Astrophys. J. 545, 364–378 (2000)

    Article  ADS  Google Scholar 

  28. Huff, E. M. & Stahler, S. W. Star formation in space and time: The Orion Nebula Cluster. Astrophys. J. 644, 355–363 (2006)

    Article  ADS  Google Scholar 

  29. Feigelson, E. D. & Townsley, L. K. The diverse stellar populations of the W3 star forming complex. Astrophys. J. 673, 354–362 (2008); preprint at 〈http://arXiv.org/abs/0710.0090〉 (2007)

    Article  CAS  ADS  Google Scholar 

  30. McKee, C. F. & Tan, J. C. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds. Nature 416, 59–61 (2002)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge S. Boissier, I. Bonnell, B. Elmegreen, E. Feigelson and C. Martin for discussions. We thank A. Urban, N. Evans and S. Doty for providing a copy of their grain–gas coupling code. This work was supported by NASA through the Hubble Fellowship program and by the NSF. Parts of this work were performed while the authors were in residence at the Kavli Institute for Theoretical Physics at UCSB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Krumholz.

Supplementary information

Supplementary Information

The file contains Supplementary Discussion in which several of the results stated in the main text are derived in more detail and Supplementary Figure 1 with Legend. (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krumholz, M., McKee, C. A minimum column density of 1 g cm-2 for massive star formation. Nature 451, 1082–1084 (2008). https://doi.org/10.1038/nature06620

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06620

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing