Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A genetic framework for improving arrhythmia therapy

Abstract

Abnormalities in heart rhythm continue to cause high rates of illness and death. Better treatment could be provided by solving two main challenges: the early identification of patients who are at risk, and the characterization of molecular pathways that culminate in arrhythmias. By analysing mechanisms that increase susceptibility to arrhythmia in individuals with genetic syndromes, it might be possible to improve current therapies and to develop new ways to treat and prevent common arrhythmias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abnormal heart rhythms.
Figure 2: A ventricular cardiomyocyte.

Similar content being viewed by others

References

  1. Zheng, Z. J., Croft, J. B., Giles, W. H. & Mensah, G. A. Sudden cardiac death in the United States, 1989 to 1998. Circulation 104, 2158–2163 (2001).

    CAS  PubMed  Google Scholar 

  2. Vreede-Swagemakers, J. J. M. et al. Out-of-hospital cardiac arrest in the 1990s — A population-based study in the Maastricht area on incidence, characteristics and survival. J. Am. Coll. Cardiol. 30, 1500–1505 (1997).

    PubMed  Google Scholar 

  3. Huikuri, H. V., Castellanos, A. & Myerburg, R. J. Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345, 1473–1482 (2001).

    CAS  PubMed  Google Scholar 

  4. Page, R. L. & Roden, D. M. Drug therapy for atrial fibrillation: where do we go from here? Nature Rev. Drug Discov. 4, 899–910 (2005).

    CAS  Google Scholar 

  5. Nattel, S. & Carlsson, L. Innovative approaches to anti-arrhythmic drug therapy. Nature Rev. Drug Discov. 5, 1034–1049 (2006).

    CAS  Google Scholar 

  6. Haissaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).

    CAS  PubMed  Google Scholar 

  7. Darbar, D. et al. Familial atrial fibrillation is a genetically heterogeneous disorder. J. Am. Coll. Cardiol. 41, 2185–2192 (2003).

    PubMed  Google Scholar 

  8. Fox, C. S. et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. J. Am. Med. Assoc. 291, 2851–2855 (2004).

    CAS  Google Scholar 

  9. Yao, J. A. et al. Remodeling of gap junctional channel function in epicardial border zone of healing canine infarcts. Circ. Res. 92, 437–443 (2003).

    CAS  PubMed  Google Scholar 

  10. Benjamin, E. J. et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. J. Am. Med. Assoc. 271, 840–844 (1994).

    CAS  Google Scholar 

  11. Allessie, M. A. et al. Pathophysiology and prevention of atrial fibrillation. Circulation 103, 769–777 (2001).

    CAS  PubMed  Google Scholar 

  12. Anyukhovsky, E. P. et al. Age-associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation. Cardiovasc. Res. 66, 353–363 (2005).

    CAS  PubMed  Google Scholar 

  13. Spach, M. S. Mounting evidence that fibrosis generates a major mechanism for atrial fibrillation. Circ. Res. 101, 743–745 (2007).

    CAS  PubMed  Google Scholar 

  14. Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995). This paper was the first to describe the finding that rapid atrial pacing remodels the atrium and thereby predisposes individuals to atrial fibrillation.

    CAS  PubMed  Google Scholar 

  15. Wijffels, M. C., Kirchhof, C. J., Dorland, R., Power, J. & Allessie, M. A. Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation 96, 3710–3720 (1997).

    CAS  PubMed  Google Scholar 

  16. Yue, L., Melnyk, P., Gaspo, R., Wang, Z. & Nattel, S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ. Res. 84, 776–784 (1999).

    CAS  PubMed  Google Scholar 

  17. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002).

    ADS  CAS  PubMed  Google Scholar 

  18. Dobrev, D. & Ravens, U. Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res. Cardiol. 98, 137–148 (2003).

    PubMed  Google Scholar 

  19. Dun, W., Chandra, P., Danilo, P. Jr, Rosen, M. R. & Boyden, P. A. Chronic atrial fibrillation does not further decrease outward currents. It increases them. Am. J. Physiol. Heart Circ. Physiol. 285, H1378–H1384 (2003).

    CAS  PubMed  Google Scholar 

  20. Kumagai, K. et al. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J. Am. Coll. Cardiol. 41, 2197–2204 (2003).

    CAS  PubMed  Google Scholar 

  21. Nakano, Y. et al. Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J. Am. Coll. Cardiol. 43, 818–825 (2004).

    CAS  PubMed  Google Scholar 

  22. Cardin, S. et al. Contrasting gene expression profiles in two canine models of atrial fibrillation. Circ. Res. 100, 425–433 (2007).

    CAS  PubMed  Google Scholar 

  23. Nerheim, P., Birger-Botkin, S., Piracha, L. & Olshansky, B. Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation 110, 247–252 (2004).

    PubMed  Google Scholar 

  24. Han, W., Chartier, D., Li, D. & Nattel, S. Ionic remodeling of cardiac Purkinje cells by congestive heart failure. Circulation 104, 2095–2100 (2001).

    CAS  PubMed  Google Scholar 

  25. Akar, F. G., Spragg, D. D., Tunin, R. S., Kass, D. A. & Tomaselli, G. F. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res. 95, 717–725 (2004).

    CAS  PubMed  Google Scholar 

  26. Frey, N., Katus, H. A., Olson, E. N. & Hill, J. A. Hypertrophy of the heart: a new therapeutic target? Circulation 109, 1580–1589 (2004).

    PubMed  Google Scholar 

  27. Schwartz, P. J. The congenital long QT syndromes from genotype to phenotype: clinical implications. J. Intern. Med. 259, 39–47 (2006).

    CAS  PubMed  Google Scholar 

  28. Ashrafian, H. & Watkins, H. Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications cardiomyopathies: therapeutics based on molecular phenotype. J. Am. Coll. Cardiol. 49, 1251–1264 (2007).

    CAS  PubMed  Google Scholar 

  29. Sen-Chowdhry, S. et al. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 115, 1710–1720 (2007).

    PubMed  Google Scholar 

  30. Schwartz, P. J., Priori, S. G. & Napolitano, C. How really rare are rare diseases?: the intriguing case of independent compound mutations in the long QT syndrome. J. Cardiovasc. Electrophysiol. 14, 1120–1121 (2003).

    PubMed  Google Scholar 

  31. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. The Sicilian Gambit: A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation 84, 1831–1851 (1991). The Sicilian Gambit group popularized the idea that antiarrhythmic therapies would be most effective if targeted against specific underlying mechanisms.

  32. Gollob, M. H. et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N. Engl. J. Med. 354, 2677–2688 (2006). This report raised the intriguing possibility of arrhythmias as a manifestation of somatic mutations rather than germline mutations.

    CAS  PubMed  Google Scholar 

  33. Niimura, H. et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N. Engl. J. Med. 338, 1248–1257 (1998).

    CAS  PubMed  Google Scholar 

  34. Watkins, H. et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med. 326, 1108–1114 (1992).

    CAS  PubMed  Google Scholar 

  35. Moss, A. J. et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 115, 2481–2489 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Crotti, L. et al. The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds. Toward a mutation-specific risk stratification. Circulation 116, 2366–2375 (2007).

    CAS  PubMed  Google Scholar 

  37. Priori, S. G., Napolitano, C. & Schwartz, P. J. Low penetrance in the long-QT syndrome: clinical impact. Circulation 99, 529–533 (1999).

    CAS  PubMed  Google Scholar 

  38. Jouven, X., Desnos, M., Guerot, C. & Ducimetiere, P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation 99, 1978–1983 (1999).

    CAS  PubMed  Google Scholar 

  39. Friedlander, Y. et al. Family history as a risk factor for primary cardiac arrest. Circulation 97, 155–160 (1998).

    CAS  PubMed  Google Scholar 

  40. Dekker, L. R. C. et al. Familial sudden death is an important risk factor for primary ventricular fibrillation: A case-control study in acute myocardial infarction patients. Circulation 114, 1140–1145 (2006). Refs 37–40 identify a family history of SCD as a potent risk factor for SCD.

    PubMed  Google Scholar 

  41. Splawski, I. et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297, 1333–1336 (2002).

    ADS  CAS  PubMed  Google Scholar 

  42. Ellinor, P. T. & Macrae, C. A. The genetics of atrial fibrillation. J. Cardiovasc. Electrophysiol. 14, 1007–1009 (2003).

    PubMed  Google Scholar 

  43. Darbar, D., Hardy, A., Haines, J. L. & Roden, D. M. A novel locus on chromosome 5 for familial atrial fibrillation associated with prolonged signal-averaged p-wave. J. Am. Coll. Cardiol. (in the press).

  44. Gudbjartsson, D. F. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448, 353–357 (2007).

    ADS  CAS  PubMed  Google Scholar 

  45. Mommersteeg, M. T. M. et al. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ. Res. 101, 902–909 (2007).

    CAS  PubMed  Google Scholar 

  46. Arking, D. E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nature Genet. 38, 644–651 (2006).

    CAS  PubMed  Google Scholar 

  47. Aarnoudse, A. J. et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam study. Circulation 116, 10–16 (2007).

    PubMed  Google Scholar 

  48. Post, W. et al. Associations between genetic variants in the NOS1AP (CAPON) gene and cardiac repolarization in the Old Order Amish. Hum. Hered. 64, 214–219 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lehnart, S. E. et al. Inherited arrhythmias: A National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 116, 2325–2345 (2007).

    CAS  PubMed  Google Scholar 

  50. Lehnart, S. & Marks, A. R. Regulation of ryanodine receptors in the heart. Circ. Res. 101, 746–749 (2007).

    CAS  PubMed  Google Scholar 

  51. Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200 (2001).

    CAS  PubMed  Google Scholar 

  52. Lahat, H. et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am. J. Hum. Genet. 69, 1378–1384 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cerrone, M. et al. Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor (RyR2). Circ. Res. 96, e77–e82 (2005).

    CAS  PubMed  Google Scholar 

  54. Knollmann, B. C. et al. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J. Clin. Invest. 116, 2510–2520 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chopra, N. et al. Modest reductions of cardiac calsequestrin increase sarcoplasmic reticulum Ca2+ leak independent of luminal Ca2+ and trigger ventricular arrhythmias in mice. Circ. Res. 101, 617–626 (2007).

    CAS  PubMed  Google Scholar 

  56. Vest, J. A. et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111, 2025–2032 (2005).

    CAS  PubMed  Google Scholar 

  57. Wehrens, X. H. et al. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc. Natl Acad. Sci. USA 103, 511–518 (2006).

    ADS  CAS  PubMed  Google Scholar 

  58. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    CAS  PubMed  Google Scholar 

  59. Reiken, S. R. et al. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts: role of phosphatases and response to isoproterenol. J. Biol. Chem. 278, 444–453 (2002).

    PubMed  Google Scholar 

  60. Wehrens, X. H. et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304, 292–296 (2004).

    ADS  CAS  PubMed  Google Scholar 

  61. Benkusky, N. A. et al. Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ. Res. 101, 819–829 (2007).

    CAS  PubMed  Google Scholar 

  62. Xiao, J. et al. Removal of FKBP12.6 does not alter the conductance and activation of cardiac ryanodine receptor and the susceptibility to stress-induced ventricular arrhythmias. J. Biol. Chem. 282, 34828–34838 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hunt, D. J. et al. K201 (JTV519) suppresses spontaneous Ca2+ release and [3H]ryanodine binding to RyR2 irrespective of FKBP12.6 association. Biochem. J. 404, 431–438 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Spirito, P., Seidman, C. E., McKenna, W. J. & Maron, B. J. The management of hypertrophic cardiomyopathy. N. Engl. J. Med. 336, 775–785 (1997).

    CAS  PubMed  Google Scholar 

  65. Knollmann, B. C. et al. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ. Res. 92, 428–436 (2003).

    CAS  PubMed  Google Scholar 

  66. Sirenko, S.G., Potter, J. D. & Knollmann, B. C. Differential effect of troponin T mutations on the inotropic responsiveness of mouse hearts — role of myofilament Ca2+ sensitivity increase. J. Physiol. 575, 201–213 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M. & Pogwizd, S. M. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res. 97, 1314–1322 (2005).

    CAS  PubMed  Google Scholar 

  68. Curran, J., Hinton, M. J., Rios, E., Bers, D. M. & Shannon, T. R. Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ. Res. 100, 391–398 (2007).

    CAS  PubMed  Google Scholar 

  69. Anderson, M. E. et al. KN-93, an inhibitor of multifunctional Ca2+/calmodulin dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J. Pharmacol. Exp.Ther. 287, 996–1006 (1998).

    CAS  PubMed  Google Scholar 

  70. Mazur, A., Roden, D. M. & Anderson, M. E. Systemic administration of calmodulin antagonist W-7 or protein kinase A inhibitor H-8 prevents torsade de pointes in rabbits. Circulation 100, 2437–2442 (1999).

    CAS  PubMed  Google Scholar 

  71. Bers, D. M. Beyond beta blockers. Nature Med. 11, 379–380 (2005).

    CAS  PubMed  Google Scholar 

  72. Zhang, R. et al. Calmodulin kinase II inhibition protects against structural heart disease. Nature Med. 11, 409–417 (2005). This paper reports that transgenic mice expressing a CaMKII-inhibitory peptide were protected against post-myocardial-infarction remodelling and arrhythmias.

    ADS  CAS  PubMed  Google Scholar 

  73. Khoo, M. S. et al. Death, cardiac dysfunction and arrhythmias due to up-regulation of calmodulin kinase II in calcineurin-induced cardiomyopathy. Circulation 114, 1352–1359 (2006).

    CAS  PubMed  Google Scholar 

  74. Sasano, T., McDonald, A. D., Kikuchi, K. & Donahue, J. K. Molecular ablation of ventricular tachycardia after myocardial infarction. Nature Med. 12, 1256–1258 (2006).

    CAS  PubMed  Google Scholar 

  75. Bucchi, A. et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation 114, 992–999 (2006).

    PubMed  Google Scholar 

  76. Mcanulty, J. et al. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N. Engl. J. Med. 337, 1576–1583 (1997).

    Google Scholar 

  77. Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002). This was the first report from a large trial showing that prophylactic implantation of ICDs in patients at high risk for future cardiac arrest reduces mortality.

    PubMed  Google Scholar 

  78. Bardy, G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    CAS  PubMed  Google Scholar 

  79. Spooner, P. M. et al. Sudden cardiac death, genes, and arrhythmogenesis: consideration of new population and mechanistic approaches from a national heart, lung, and blood institute workshop, part I. Circulation 103, 2361–2364 (2001).

    CAS  PubMed  Google Scholar 

  80. Young, J. B. et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD trial. J. Am. Med. Assoc. 289, 2685–2694 (2003).

    Google Scholar 

  81. The CAST Investigators. Preliminary report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J. Med. 321, 406–412 (1989). This report shows that Na+-channel-blocking drugs increase mortality in patients convalescing from acute myocardial infarction.

  82. Krishnan, S.C. & Antzelevitch, C. Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry? Circulation 87, 562–572 (1993).

    CAS  PubMed  Google Scholar 

  83. Lukas, A. & Antzelevitch, C. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current. Circulation 88, 2903–2915 (1993).

    CAS  PubMed  Google Scholar 

  84. Coromilas, J., Saltman, A. E., Waldecker, B., Dillon, S. M. & Wit, A. L. Electrophysiological effects of flecainide on anisotropic conduction and reentry in infarcted canine hearts. Circulation 91, 2245–2263 (1995).

    CAS  PubMed  Google Scholar 

  85. Waldo, A. L. et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. Lancet 348, 7–12 (1996).

    CAS  PubMed  Google Scholar 

  86. Kober, L. et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Danish Investigations of Arrhythmia and Mortality on Dofetilide (DIAMOND) Study Group. Lancet 356, 2052–2058 (2000).

    CAS  PubMed  Google Scholar 

  87. Camm, A. J. et al. Mortality in patients after a recent myocardial infarction: A randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation 109, 990–996 (2004).

    PubMed  Google Scholar 

  88. Roden, D. M. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 350, 1013–1022 (2004).

    CAS  PubMed  Google Scholar 

  89. Norwegian Multicenter Study Group. Timolol-induced reduction in mortality in reinfarction in patients surviving acute myocardial infarction. N. Engl. J. Med. 304, 801–807 (1981).

  90. Beta-Blocker Heart Attack Trial Research Group. A randomized trial of propranolol in patients with acute myocardial infarction. I. Mortality results. J. Am. Med. Assoc. 247, 1707–1714 (1982).

  91. Murray, K. T., Mace, L. C. & Yang, Z. Nonantiarrhythmic drug therapy for atrial fibrillation. Heart Rhythm. 4, S88–S90 (2007).

    Google Scholar 

  92. Li, D. et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104, 2608–2614 (2001).

    CAS  PubMed  Google Scholar 

  93. Pedersen, O. D., Bagger, H., Kober, L. & Torp-Pedersen, C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation 100, 376–380 (1999).

    CAS  PubMed  Google Scholar 

  94. Vermes, E. et al. Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction. Insight from the studies of left ventricular dysfunction (SOLVD) trials. Circulation 107, 2926–2931 (2003).

    PubMed  Google Scholar 

  95. Kumagai, K., Nakashima, H. & Saku, K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc. Res. 62, 105–111 (2004).

    CAS  PubMed  Google Scholar 

  96. Shiroshita-Takeshita, A., Schram, G., Lavoie, J. & Nattel, S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation 110, 2313–2319 (2004).

    CAS  PubMed  Google Scholar 

  97. Marchioli, R. et al. Early protection against sudden death by n–3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation 105, 1897–1903 (2002). The greatest reduction in the incidence of SCD in a large randomized clinical trial has been with fish oil (53% reduction at 4 months).

    CAS  PubMed  Google Scholar 

  98. Leaf, A., Kang, J. X., Xiao, Y. F. & Billman, G. E. Clinical prevention of sudden cardiac death by n–3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n–3 fish oils. Circulation 107, 2646–2652 (2003).

    PubMed  Google Scholar 

  99. Sarrazin, J. F. et al. Reduced incidence of vagally induced atrial fibrillation and expression levels of connexins by n–3 polyunsaturated fatty acids in dogs. J. Am. Coll. Cardiol. 50, 1505–1512 (2007).

    CAS  PubMed  Google Scholar 

  100. Morady, F. Radio-frequency ablation as treatment for cardiac arrhythmias. N. Engl. J. Med. 340, 534–544 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the United States Public Health Service.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D.M.R. accepted fees for one-time consultations on QT prolongation by new non-cardiovascular therapies, on genetic testing for new drugs, and/or on developing new antiarrhythmic drugs from Sapphire Therapeutics, Atlas Venture Advisors, Pfizer, Avanir Pharmaceuticals, Baker Brothers Advisors, CardioKine and Eli Lilly and Company. D.M.R. also is paid royalties on a patent on D85N as a predictive single-nucleotide polymorphism for drug-induced long-QT syndrome. B.C.K. declares no competing interests.

Additional information

Correspondence should be addressed to D.M.R. (dan.roden@vanderbilt.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knollmann, B., Roden, D. A genetic framework for improving arrhythmia therapy. Nature 451, 929–936 (2008). https://doi.org/10.1038/nature06799

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06799

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing