Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Silicon nanowires as efficient thermoelectric materials

Abstract

Thermoelectric materials interconvert thermal gradients and electric fields for power generation or for refrigeration1,2. Thermoelectrics currently find only niche applications because of their limited efficiency, which is measured by the dimensionless parameter ZT—a function of the Seebeck coefficient or thermoelectric power, and of the electrical and thermal conductivities. Maximizing ZT is challenging because optimizing one physical parameter often adversely affects another3. Several groups have achieved significant improvements in ZT through multi-component nanostructured thermoelectrics4,5,6, such as Bi2Te3/Sb2Te3 thin-film superlattices, or embedded PbSeTe quantum dot superlattices. Here we report efficient thermoelectric performance from the single-component system of silicon nanowires for cross-sectional areas of 10 nm × 20 nm and 20 nm × 20 nm. By varying the nanowire size and impurity doping levels, ZT values representing an approximately 100-fold improvement over bulk Si are achieved over a broad temperature range, including ZT ≈ 1 at 200 K. Independent measurements of the Seebeck coefficient, the electrical conductivity and the thermal conductivity, combined with theory, indicate that the improved efficiency originates from phonon effects. These results are expected to apply to other classes of semiconductor nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrographs of the device used to quantitate the thermopower and electrical and thermal conductivity of Si nanowire arrays.
Figure 2: Factors contributing to ZT for various Si nanowires. All nanowires are 20 nm in height.
Figure 3: Temperature dependence of ZT for two different groups of nanowires.
Figure 4: Thermopower calculation plotted along with experimental data (black points) from a 20-nm-wide Si nanowire p-type doped at 3 × 1019 cm-3.

Similar content being viewed by others

References

  1. MacDonald, D. K. C. Thermoelectricity: An Introduction to the Principles (Wiley, New York, 1962)

    MATH  Google Scholar 

  2. Mahan, G., Sales, B. & Sharp, J. Thermoelectric materials: New approaches to an old problem. Phys. Today 50, 42–47 (1997)

    Article  CAS  Google Scholar 

  3. Chen, G. et al. Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003)

    Article  CAS  Google Scholar 

  4. Venkatasubramanian, R. et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Harman, T. C. et al. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Hsu, K. F. et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Hicks, L. D. & Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Mahan, G. D. & Sofo, J. O. The best thermoelectric. Proc. Natl Acad. Sci. USA 93, 7436–7439 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Humphrey, T. E. & Linke, H. Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Boukai, A., Xu, K. & Heath, J. R. Size-dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Adv. Mater. 18, 864–869 (2006)

    Article  CAS  Google Scholar 

  11. Yu-Ming, L. et al. Semimetal-semiconductor transition in Bi1-xSbx alloy nanowires and their thermoelectric properties. Appl. Phys. Lett. 81, 2403–2405 (2002)

    Article  ADS  Google Scholar 

  12. Majumdar, A. Enhanced thermoelectricity in semiconductor nanostructures. Science 303, 777–778 (2004)

    Article  CAS  Google Scholar 

  13. Weber, L. & Gmelin, E. Transport properties of silicon. Appl. Phys. A 53, 136–140 (1991)

    Article  ADS  Google Scholar 

  14. Small, J. P., Perez, K. M. & Kim, P. Modulation of thermoelectric power of individual carbon nanotubes. Phys. Rev. Lett. 91, 256801 (2003)

    Article  ADS  Google Scholar 

  15. Li, S. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 125, 881–888 (2003)

    Article  Google Scholar 

  16. Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of semiconductor crystalline nanowires. Science 279, 208–211 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Melosh, N. A. et al. Ultra-high density nanowire lattices and circuits. Science 300, 112–115 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Wang, D., Sheriff, B. A. & Heath, J. R. Complementary symmetry silicon nanowire logic: Power-efficient inverters with gain. Small 2, 1153–1158 (2006)

    Article  CAS  Google Scholar 

  20. Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992)

    Article  CAS  Google Scholar 

  21. Landau, L. D. & Lifshitz, E. M. in Theory of Elasticity 3rd edn 138 (Butterworth Heinemann, Oxford, 1986)

    Google Scholar 

  22. Pearson, W. B. Survey of thermoelectric studies of the Group 1 metals at low temperatures carried out at the National Research Laboratories, Ottawa. Sov. Phys. Solid State 3, 1024–1033 (1961)

    Google Scholar 

  23. Herring, C. Theory of the thermoelectric power of semiconductors. Phys. Rev. 96, 1163–1187 (1954)

    Article  ADS  CAS  Google Scholar 

  24. Geballe, T. H. & Hull, G. W. Seebeck effect in silicon. Phys. Rev. 98, 940–947 (1955)

    Article  ADS  CAS  Google Scholar 

  25. Behnen, E. Quantitative examination of the thermoelectric power of n-type Si in the phonon drag regime. J. Appl. Phys. 67, 287–292 (1990)

    Article  ADS  CAS  Google Scholar 

  26. Trzcinksi, R., Gmelin, E. & Queisser, H. J. Quenched phonon drag in silicon microcontacts. Phys. Rev. Lett. 56, 1086–1089 (1986)

    Article  ADS  Google Scholar 

  27. Maranganti, R. & Sharma, P. Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98, 195504 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Lifshitz, R. & Roukes, M. L. Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Zener, C. Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52, 230–235 (1937)

    Article  ADS  Google Scholar 

  30. Gurevich, L. The thermoelectric properties of conductors. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 16, 193–228 (1946)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Wang for discussions and J. Dionne, M. Roy, K. Kan and T. Lee for fabrication assistance. This work was supported by the Office of Naval Research, the Department of Energy, the National Science Foundation, the Defense Advanced Research Projects Agency, and a subcontract from the MITRE Corporation.

Author Contributions A.I.B., Y.B., J.-K.Y. and J.R.H. contributed primarily to the design and execution of the experiments. J.T.-K. and W.A.G. contributed primarily to the theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Heath.

Supplementary information

Supplementary Information

The file contains Supplementary Methods and Discussion with Supplementary Figures S1-S8. This file contains information about the materials processing and thermoelectric measurements. Also, a more detailed discussion of the results and theory is included. (PDF 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukai, A., Bunimovich, Y., Tahir-Kheli, J. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008). https://doi.org/10.1038/nature06458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06458

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing