Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the sulphiredoxin–peroxiredoxin complex reveals an essential repair embrace

Abstract

Typical 2-Cys peroxiredoxins (Prxs) have an important role in regulating hydrogen peroxide-mediated cell signalling1. In this process, Prxs can become inactivated through the hyperoxidation of an active site Cys residue to Cys sulphinic acid. The unique repair of this moiety by sulphiredoxin (Srx) restores peroxidase activity and terminates the signal2. The hyperoxidized form of Prx exists as a stable decameric structure with each active site buried. Therefore, it is unclear how Srx can access the sulphinic acid moiety. Here we present the 2.6 Å crystal structure of the human Srx–PrxI complex. This complex reveals the complete unfolding of the carboxy terminus of Prx, and its unexpected packing onto the backside of Srx away from the Srx active site. Binding studies and activity analyses of site-directed mutants at this interface show that the interaction is required for repair to occur. Moreover, rearrangements in the Prx active site lead to a juxtaposition of the Prx Gly-Gly-Leu-Gly and Srx ATP-binding motifs, providing a structural basis for the first step of the catalytic mechanism. The results also suggest that the observed interactions may represent a common mode for other proteins to bind to Prxs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peroxiredoxin hyperoxidation and repair by sulphiredoxin.
Figure 2: Srx-PrxI active site interactions and structural plasticity.
Figure 3: PrxI backside interaction with Srx.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited with the Protein Data Bank under the accession number 2RII.

References

  1. Rhee, S. G. Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006)

    Article  Google Scholar 

  2. Biteau, B., Labarre, J. & Toledano, M. B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980–984 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995)

    Article  ADS  CAS  Google Scholar 

  5. Kang, S. W., Rhee, S. G., Chang, T. S., Jeong, W. & Choi, M. H. 2-Cys peroxiredoxin function in intracellular signal transduction: Therapeutic implications. Trends Mol. Med. 11, 571–578 (2005)

    Article  CAS  Google Scholar 

  6. Klaunig, J. E. & Kamendulis, L. M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44, 239–267 (2004)

    Article  CAS  Google Scholar 

  7. Wood, Z. A., Poole, L. B. & Karplus, P. A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650–653 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Bozonet, S. M. et al. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280, 23319–23327 (2005)

    Article  CAS  Google Scholar 

  9. Vivancos, A. P. et al. A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc. Natl Acad. Sci. USA 102, 8875–8880 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Wood, Z. A., Schröder, E., Harris, R. J. & Poole, L. B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003)

    Article  CAS  Google Scholar 

  11. Schröder, E. et al. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution. Structure 8, 605–615 (2000)

    Article  Google Scholar 

  12. Lee, D. Y. et al. Mutagenesis and modeling of the peroxiredoxin (Prx) complex with the NMR structure of ATP-bound human sulfiredoxin implicate aspartate 187 of Prx I as the catalytic residue in ATP hydrolysis. Biochemistry 45, 15301–15309 (2006)

    Article  CAS  Google Scholar 

  13. Jönsson, T. J., Murray, M. S., Johnson, L. C., Poole, L. B. & Lowther, W. T. Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin. Biochemistry 44, 8634–8642 (2005)

    Article  Google Scholar 

  14. Jeong, W., Park, S. J., Chang, T. S., Lee, D. Y. & Rhee, S. G. Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J. Biol. Chem. 281, 14400–14407 (2006)

    Article  CAS  Google Scholar 

  15. Koo, K. H. et al. Regulation of thioredoxin peroxidase activity by C-terminal truncation. Arch. Biochem. Biophys. 397, 312–318 (2002)

    Article  CAS  Google Scholar 

  16. Moon, J. C. et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J. Biol. Chem. 280, 28775–28784 (2005)

    Article  CAS  Google Scholar 

  17. Sayed, A. A. & Williams, D. L. Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni . J. Biol. Chem. 279, 26159–26166 (2004)

    Article  CAS  Google Scholar 

  18. Chang, T. S. et al. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279, 50994–51001 (2004)

    Article  CAS  Google Scholar 

  19. Hong, S. K., Cha, M. K. & Kim, I. H. Specific protein interaction of human Pag with Omi/HtrA2 and the activation of the protease activity of Omi/HtrA2. Free Radic. Biol. Med. 40, 275–284 (2006)

    Article  CAS  Google Scholar 

  20. Choi, M. H. et al. Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435, 347–353 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Jung, H., Kim, T., Chae, H. Z., Kim, K. T. & Ha, H. Regulation of macrophage migration inhibitory factor and thiol-specific antioxidant protein PAG by direct interaction. J. Biol. Chem. 276, 15504–15510 (2001)

    Article  CAS  Google Scholar 

  22. Xiao, N., Du, G. & Frohman, M. A. Peroxiredoxin II functions as a signal terminator for H2O2-activated phospholipase D1. FEBS J. 272, 3929–3937 (2005)

    Article  CAS  Google Scholar 

  23. Harris, J. R. et al. Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography. Biochim. Biophys. Acta 1547, 221–234 (2001)

    Article  CAS  Google Scholar 

  24. Phalen, T. J. et al. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J. Cell Biol. 175, 779–789 (2006)

    Article  CAS  Google Scholar 

  25. Jang, H. H. et al. Two enzymes in one: Two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625–635 (2004)

    Article  CAS  Google Scholar 

  26. Parsonage, D. et al. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44, 10583–10592 (2005)

    Article  CAS  Google Scholar 

  27. Hirotsu, S. et al. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc. Natl Acad. Sci. USA 96, 12333–12338 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Woo, H. A. et al. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-Cys peroxiredoxins. J. Biol. Chem. 280, 3125–3128 (2005)

    Article  CAS  Google Scholar 

  29. Mazur, D. J. & Perrino, F. W. Excision of 3′ termini by the TREX1 and TREX2 3′→5' exonucleases. Characterization of the recombinant proteins. J. Biol. Chem. 276, 17022–17029 (2001)

    Article  CAS  Google Scholar 

  30. McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D 63, 32–41 (2007)

    Article  CAS  Google Scholar 

  31. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997)

    Article  CAS  Google Scholar 

  32. Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  33. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D. 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  34. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  35. Davis, I. W., Murray, L. W., Richardson, J. S. & Richardson, D. C. MOLPROBITY: Structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004)

    Article  CAS  Google Scholar 

  36. Collaborative Computational Project, Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

Download references

Acknowledgements

We thank M. Murray for contributions to the structure determination, L. B. Poole, P. A. Karplus and N. H. Heintz for discussions, the staff of the NSLS and beamline X8C for their assistance during data collection and the RapiData course, and R. R. Hantgan for help with the circular dichroism and fluorescence anisotropy experiments. This work was supported by an NIH grant (W.T.L.) and an American Heart Association Postdoctoral Fellowship (T.J.J.). NSLS is supported by the US Department of Energy and NIH.

Author Contributions T.J.J. and L.C.J. performed all biochemical and crystallization experiments. T.J.J. and W.T.L solved the structure. T.J.J. and W.T.L. wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Todd Lowther.

Supplementary information

Supplementary Information

The file contains Supplementary Table S1, Supplementary Figures S1-S9 with Legends and additional references. (PDF 713 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jönsson, T., Johnson, L. & Lowther, W. Structure of the sulphiredoxin–peroxiredoxin complex reveals an essential repair embrace. Nature 451, 98–101 (2008). https://doi.org/10.1038/nature06415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06415

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing