Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NUMB controls p53 tumour suppressor activity

Abstract

NUMB is a cell fate determinant, which, by asymmetrically partitioning at mitosis, controls cell fate choices by antagonising the activity of the plasma membrane receptor of the NOTCH family1. NUMB is also an endocytic protein2, and the NOTCH–NUMB counteraction has been linked to this function3,4. There might be, however, additional functions of NUMB, as witnessed by its proposed role as a tumour suppressor in breast cancer5. Here we describe a previously unknown function for human NUMB as a regulator of tumour protein p53 (also known as TP53). NUMB enters in a tricomplex with p53 and the E3 ubiquitin ligase HDM2 (also known as MDM2), thereby preventing ubiquitination and degradation of p53. This results in increased p53 protein levels and activity, and in regulation of p53-dependent phenotypes. In breast cancers there is frequent loss of NUMB expression5. We show that, in primary breast tumour cells, this event causes decreased p53 levels and increased chemoresistance. In breast cancers, loss of NUMB expression causes increased activity of the receptor NOTCH5. Thus, in these cancers, a single event—loss of NUMB expression—determines activation of an oncogene (NOTCH) and attenuation of the p53 tumour suppressor pathway. Biologically, this results in an aggressive tumour phenotype, as witnessed by findings that NUMB-defective breast tumours display poor prognosis. Our results uncover a previously unknown tumour suppressor circuitry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NUMB interacts with and regulates p53.
Figure 2: NUMB regulates HDM2-mediated degradation of p53.
Figure 3: NUMB silencing alters the p53-mediated response to DNA damage.
Figure 4: Loss of NUMB in human breast tumours determines decreased p53, enhanced chemoresistance and predicts poor prognosis.

Similar content being viewed by others

References

  1. Roegiers, F. & Jan, Y. N. Asymmetric cell division. Curr. Opin. Cell Biol. 16, 195–205 (2004)

    Article  CAS  Google Scholar 

  2. Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000)

    Article  CAS  Google Scholar 

  3. Berdnik, D., Torok, T., Gonzalez-Gaitan, M. & Knoblich, J. A. The endocytic protein α-adaptin is required for numb-mediated asymmetric cell division in Drosophila . Dev. Cell 3, 221–231 (2002)

    Article  CAS  Google Scholar 

  4. Hutterer, A. & Knoblich, J. A. Numb and α-adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep. 6, 836–842 (2005)

    Article  CAS  Google Scholar 

  5. Pece, S. et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167, 215–221 (2004)

    Article  CAS  Google Scholar 

  6. Vousden, K. H. & Prives, C. p53 and prognosis: new insights and further complexity. Cell 120, 7–10 (2005)

    CAS  PubMed  Google Scholar 

  7. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991)

    Article  ADS  CAS  Google Scholar 

  8. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 (1992)

    Article  CAS  Google Scholar 

  9. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92, 725–734 (1998)

    Article  CAS  Google Scholar 

  12. Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358, 80–83 (1992)

    Article  ADS  CAS  Google Scholar 

  13. Sherr, C. J. Tumor surveillance via the ARF–p53 pathway. Genes Dev. 12, 2984–2991 (1998)

    Article  CAS  Google Scholar 

  14. McCann, A. H. et al. Amplification of the MDM2 gene in human breast cancer and its association with MDM2 and p53 protein status. Br. J. Cancer 71, 981–985 (1995)

    Article  CAS  Google Scholar 

  15. Pharoah, P. D., Day, N. E. & Caldas, C. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br. J. Cancer 80, 1968–1973 (1999)

    Article  CAS  Google Scholar 

  16. Vestey, S. B. et al. p14ARFexpression in invasive breast cancers and ductal carcinoma in situ—relationships to p53 and Hdm2. Breast Cancer Res. 6, R571–R585 (2004)

    Article  CAS  Google Scholar 

  17. Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999)

    Article  CAS  Google Scholar 

  18. Silva, J. et al. Analysis of genetic and epigenetic processes that influence p14ARF expression in breast cancer. Oncogene 20, 4586–4590 (2001)

    Article  CAS  Google Scholar 

  19. Silva, J. et al. Concomitant expression of p16INK4a and p14ARF in primary breast cancer and analysis of inactivation mechanisms. J. Pathol. 199, 289–297 (2003)

    Article  CAS  Google Scholar 

  20. Juven-Gershon, T. et al. The Mdm2 oncoprotein interacts with the cell fate regulator Numb. Mol. Cell. Biol. 18, 3974–3982 (1998)

    Article  CAS  Google Scholar 

  21. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998)

    Article  CAS  Google Scholar 

  23. Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000)

    Article  CAS  Google Scholar 

  24. Reis, T. & Edgar, B. A. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Cell 117, 253–264 (2004)

    Article  CAS  Google Scholar 

  25. Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993)

    Article  CAS  Google Scholar 

  26. Fish, K. N., Schmid, S. L. & Damke, H. Evidence that dynamin-2 functions as a signal-transducing GTPase. J. Cell Biol. 150, 145–154 (2000)

    Article  CAS  Google Scholar 

  27. Enari, M., Ohmori, K., Kitabayashi, I. & Taya, Y. Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev. 20, 1087–1099 (2006)

    Article  CAS  Google Scholar 

  28. Sharpless, N. E. & DePinho, R. A. Telomeres, stem cells, senescence, and cancer. J. Clin. Invest. 113, 160–168 (2004)

    Article  CAS  Google Scholar 

  29. Sherley, J. L., Stadler, P. B. & Johnson, D. R. Expression of the wild-type p53 antioncogene induces guanine nucleotide-dependent stem cell division kinetics. Proc. Natl Acad. Sci. USA 92, 136–140 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Rambhatla, L., Ram-Mohan, S., Cheng, J. J. & Sherley, J. L. Immortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells. Cancer Res. 65, 3155–3161 (2005)

    Article  CAS  Google Scholar 

  31. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003)

    Article  CAS  Google Scholar 

  32. Woelk, T. et al. Molecular mechanisms of coupled monoubiquitination. Nature Cell Biol. 8, 1246–1254 (2006)

    Article  CAS  Google Scholar 

  33. Veronesi, U. et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N. Engl. J. Med. 349, 546–553 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Helin for the p53 and HDM2 reagents; L. Van Parijis for the pLL3.7 lentiviral vector; R. Bernard for the p53 shRNA pSUPER vector; G. Matera for technical assistance; P. Maisonneuve and G. Goisis for statistical analysis; the Imaging Service at IEO; and the Real Time PCR Service at IFOM. This work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro and MIUR to S.P. and P.P.D.F., from the European Community (VI Framework), The Ferrari Foundation, the Monzino Foundation and the CARIPLO Foundation to P.P.D.F., and from the G. Vollaro Foundation to S.P.

Author Contributions I.N.C., D.T., F.S.-N. and S.P. performed experimental work. P.N., V.G. and G.V. performed the clinical part of the work (patient selection, histology and data analysis of the patient’s case collection). S.P. and P.P.D.F. planned and supervised the project, performed data analysis and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salvatore Pece or Pier Paolo Di Fiore.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion and additional references; Supplementary Table S1 and Supplementary Figures S1-S6 with Legends. (PDF 3132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colaluca, I., Tosoni, D., Nuciforo, P. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008). https://doi.org/10.1038/nature06412

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06412

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing