Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Superconductivity without phonons

Abstract

The idea of superconductivity without the mediating role of lattice vibrations (phonons) has a long history. It was realized soon after the publication of the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity 50 years ago that a full treatment of both the charge and spin degrees of freedom of the electron predicts the existence of attractive components of the effective interaction between electrons even in the absence of lattice vibrations—a particular example is the effective interaction that depends on the relative spins of the electrons. Such attraction without phonons can lead to electronic pairing and to unconventional forms of superconductivity that can be much more sensitive than traditional (BCS) superconductivity to the precise details of the crystal structure and to the electronic and magnetic properties of a material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cooper-pair states in real space in two dimensions.
Figure 2: Schematic illustration of the charge-charge and spin-spin quasiparticle interaction in a metal.
Figure 3: Magnetic interaction potential in a lattice.
Figure 4: Effect of electronic anisotropy.
Figure 5: Proximity to antiferromagnetic and density instabilities.
Figure 6: Effect of crystal lattice on the magnetic properties.
Figure 7: Proximity to a ferromagnetic instability.

Similar content being viewed by others

References

  1. Laughlin, R. B. & Pines, D. The theory of everything. Proc. Natl Acad. Sci. USA 97, 28–31 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  3. Parks, R. D. Superconductivity Vols 1 and 2 (Dekker, New York, 1969)

    Google Scholar 

  4. Steglich, F. et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2 . Phys. Rev. Lett. 43, 1892–1896 (1979)

    Article  ADS  CAS  Google Scholar 

  5. Ott, H. R., Rudigier, H., Fisk, Z. & Smith, J. L. UBe13 – an unconventional actinide superconductor. Phys. Rev. Lett. 50, 1595–1598 (1983)

    Article  ADS  CAS  Google Scholar 

  6. Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984)

    Article  ADS  CAS  Google Scholar 

  7. Fisk, Z. et al. Heavy-electron metals: New highly correlated states of matter. Science 239, 33–42 (1988)

    Article  ADS  CAS  Google Scholar 

  8. Taillefer, L. & Lonzarich, G. G. Heavy-fermion quasiparticles in UPt3 . Phys. Rev. Lett. 60, 1570–1573 (1988)

    Article  ADS  CAS  Google Scholar 

  9. Onnes, H. K. On the sudden change in the rate at which the resistance of mercury disappears. Commun. Phys. Lab. Univ. Leiden 124c, 1 (1911)

    Google Scholar 

  10. Hoddeson, L. John Bardeen and theory of superconductivity. J. Stat. Phys 103, 625–640 (2001)

    Article  MathSciNet  Google Scholar 

  11. Heisenberg, W. Zur Theorie der Supraleitung [On the theory of superconductivity]. Z. Naturforsch. A 2, 185–201 (1947)

    ADS  Google Scholar 

  12. Macke, W. Uber die Wechselwirkungen im Fermi Gas-Polarisationsercheinungen, Correlationsenergie, Elektronenkondensation [On exchange effects in the Fermi gas-polarization features, correlation energy and electron condensation]. Z. Naturforsch. A 5, 192–208 (1950)

    ADS  MATH  Google Scholar 

  13. Maxwell, E. Isotope effect in superconductivity of mercury. Phys. Rev. 78, 477 (1950)

    Article  ADS  CAS  Google Scholar 

  14. Reynolds, C. et al. Superconductivity of isotopes of mercury. Phys. Rev. 78, 487 (1950)

    Article  ADS  CAS  Google Scholar 

  15. Fröhlich, H. Theory of the superconducting state. I. The ground state at the absolute zero of temperature. Phys. Rev. 79, 845–856 (1950)

    Article  ADS  Google Scholar 

  16. Bardeen, J. Wave functions for superconducting electrons. Phys. Rev. 80, 567–574 (1950)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Fröhlich, H. Interaction of electrons with lattice vibrations. Proc. R. Soc. Lond. A 215, 291–298 (1952)

    Article  ADS  Google Scholar 

  18. Bardeen, J. & Pines, D. Electron-phonon interaction in metals. Phys. Rev. 99, 1140–1150 (1955)

    Article  ADS  CAS  Google Scholar 

  19. Bohm, D. & Pines, D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609–625 (1953)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Cooper, L. N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189–1190 (1956)

    Article  ADS  CAS  Google Scholar 

  21. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64 (2). 189–193 (1986)

    Article  ADS  CAS  Google Scholar 

  22. Berk, N. F. & Schrieffer, J. R. Effect of ferromagnetic spin correlations on superconductivity. Phys. Rev. Lett. 17, 433–435 (1966)

    Article  ADS  CAS  Google Scholar 

  23. Nakajima, S. Paramagnon effect on the BCS transition in 3He. Prog. Theor. Phys. 50, 1101–1109 (1973)

    Article  ADS  CAS  Google Scholar 

  24. Brinkman, W. F., Serene, J. W. & Anderson, P. W. Spin-fluctuation stabilization of anisotropic superfluid states. Phys. Rev. A 10, 2386–2394 (1974)

    Article  ADS  CAS  Google Scholar 

  25. Fay, D. & Appel, J. Coexistence of p-state superconductivity and itinerant ferromagnetism. Phys. Rev. B 22, 3173–3182 (1980)

    Article  ADS  CAS  Google Scholar 

  26. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994)

    Article  ADS  CAS  Google Scholar 

  27. Saxena, S. S. et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 . Nature 406, 587–592 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Jerome, D. Organic Conductors (Dekker, New York, 1994)

    Google Scholar 

  29. Fisk, Z. & Maple, M. B. On the existence of heavy fermion ytterbium compounds. J. Alloy. Comp. 183, 303–311 (1992)

    Article  CAS  Google Scholar 

  30. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Thalmeier, P., Zwicknagl, G., Stockert, O., Spain, G. & Steglich, F. in Frontiers in Superconducting Materials (ed. Narlikar, A.) 109–171 (Springer, Berlin, 2004)

    Google Scholar 

  32. Onuki, Y. et al. Recent advances in the magnetism and superconductivity of heavy fermion systems. J. Phys. Soc. Jpn 73, 769–787 (2004)

    Article  ADS  CAS  Google Scholar 

  33. Emery, V. J. The mechanisms of organic superconductivity. Synth. Met. 13, 21–27 (1986)

    Article  CAS  Google Scholar 

  34. Scalapino, D. J., Loh, E. & Hirsch, J. E. d-wave pairing near a spin-density wave instability. Phys. Rev. B 34, 8190–8192 (1986)

    Article  ADS  CAS  Google Scholar 

  35. Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986)

    Article  ADS  CAS  Google Scholar 

  36. Landau, L. D. & Lifshitz, E. M. Statistical Physics 3rd edn, Pt 1 (Pergamon, Oxford, 1976)

    MATH  Google Scholar 

  37. Pines, D. & Nozières, P. The Theory of Quantum Liquids – Normal Fermi Liquids (Addison-Wesley, Wokingham, 1989)

    Google Scholar 

  38. Aldrich, C. H. & Pines, D. Polarisation potentials and elementary excitations in liquid-He-3. J. Low Temp. Phys. 32, 689–715 (1978)

    Article  ADS  CAS  Google Scholar 

  39. Kohn, W. & Luttinger, J. M. New mechanism for superconductivity. Phys. Rev. Lett. 15, 524–526 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  40. Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985)

    Book  Google Scholar 

  41. Millis, A. J. Effect of a non-zero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993)

    Article  ADS  CAS  Google Scholar 

  42. Lonzarich, G. G. in Electron (ed. Springford, M.) Ch 6 (Cambridge Univ. Press, Cambridge, UK, 1997)

    Google Scholar 

  43. Monthoux, P. & Lonzarich, G. G. Density-fluctuation-mediated superconductivity. Phys. Rev. B 69, 064517 (2004)

    Article  ADS  Google Scholar 

  44. Osheroff, D. D., Richardson, R. C. & Lee, D. M. Evidence for a new phase of solid He-3. Phys. Rev. Lett. 28, 885–888 (1972)

    Article  ADS  CAS  Google Scholar 

  45. Monthoux, P. & Lonzarich, G. G. Magnetically mediated superconductivity in quasi-two and three dimensions. Phys. Rev. B 63, 054529 (2001); Magnetically mediated superconductivity: Crossover from cubic to tetragonal lattice. Phys. Rev. B 66, 224504 (2002)

    Article  ADS  Google Scholar 

  46. Arita, R., Kuroki, K. & Aoki, H. d- and p-wave superconductivity mediated by spin fluctuations in two-and three-dimensional single-band repulsive Hubbard model. J. Phys. Soc. Jpn 69, 1181–1191 (2000)

    Article  ADS  CAS  Google Scholar 

  47. Fukazawa, H. & Yamada, K. Theory on superconductivity of CeIn3 in heavy fermion systems. J. Phys. Soc. Jpn 72, 2449–2452 (2003)

    Article  ADS  CAS  Google Scholar 

  48. Takimoto, T., Hotta, T. & Ueda, K. Strong-coupling theory of superconductivity in a degenerate Hubbard model. Phys. Rev. B 69, 104504 (2004)

    Article  ADS  Google Scholar 

  49. Monthoux, P. & Lonzarich, G. G. p-wave and d-wave superconductivity in quasi-two-dimensional metals. Phys. Rev. B 59, 14598–14605 (1999)

    Article  ADS  CAS  Google Scholar 

  50. Honerkamp, C. & Rice, T. M. Cuprates and ruthenates: Similarities and differences. J. Low Temp. Phys. 131, 159–167 (2003)

    Article  ADS  CAS  Google Scholar 

  51. Monthoux, P. & Lonzarich, G. G. Magnetic interactions in a single-band model for the cuprates and ruthenates. Phys. Rev. B 71, 054504 (2005)

    Article  ADS  Google Scholar 

  52. Knebel, G., Braithwaite, D., Canfield, P. C., Lapertot, G. & Flouquet, J. The quantum critical point revisited in CeIn3 . High Press. Res. 22, 167–170 (2002)

    Article  ADS  Google Scholar 

  53. Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5 . Phys. Rev. Lett. 84, 4986–4989 (2000)

    Article  ADS  CAS  Google Scholar 

  54. Petrovic, C. et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13, L337–L342 (2001)

    Article  CAS  Google Scholar 

  55. Thompson, J. D. et al. Magnetism and unconventional superconductivity in CenMmIn3n+2m heavy-fermion crystals. Physica B 329–333, 446–449 (2003)

    Article  ADS  Google Scholar 

  56. Curro, N., Fisk, Z. & Pines, D. Scaling and the magnetic origin of emergent behaviour in correlated electron superconductors. MRS Bull. 30, 442–446 (2005)

    Article  CAS  Google Scholar 

  57. Gegenwart, P. et al. Non-Fermi liquid effects at ambient pressure in stoichiometric heavy-fermion compound with very low disorder: CeNi2Ge2 . Phys. Rev. Lett. 82, 1293–1296 (1999)

    Article  ADS  CAS  Google Scholar 

  58. Grosche, F. M. et al. Anomalous low temperature states in CeNi2Ge2 and CePd2Si2 . J. Phys. Condens. Matter 12, L533–L540 (2000)

    Article  CAS  Google Scholar 

  59. Braithwaite, D. et al. Superconductivity, upper critical field and normal state resistivity in CeNi2Ge2 under pressure. J. Phys. Condens. Matter 12, 1339–1349 (2000)

    Article  CAS  Google Scholar 

  60. Yuan, H. Q. et al. Observation of two distinct superconducting phases in CeCu2Si2 . Science 302, 2104–2107 (2003)

    Article  ADS  CAS  Google Scholar 

  61. Holmes, A. T., Jaccard, D. & Miyake, K. Signatures of valence fluctuations in CeCu2Si2 under high pressure. Phys. Rev. B 69, 024508 (2004)

    Article  ADS  Google Scholar 

  62. Sarrao, J. L. et al. Plutonium-based superconductivity with a transition temperature above 18 K. Nature 420, 297–299 (2002)

    Article  ADS  CAS  Google Scholar 

  63. Bauer, E. D. et al. Structural tuning of unconventional superconductivity in PuMGa5 (M = Co, Rh). Phys. Rev. Lett. 93, 147005 (2004)

    Article  ADS  CAS  Google Scholar 

  64. Huxley, A. et al. The co-existence of superconductivity and ferromagnetism in actinide compounds. J. Phys. Condens. Matter 15, S1945–S1955 (2003)

    Article  CAS  Google Scholar 

  65. Kitaoka, Y. et al. Novel phase diagram of superconductivity and ferromagnetism in UGe2: A 73Ge-NQR study under high pressure. J. Phys. Condens. Matter 17, S975–S986 (2005)

    Article  CAS  Google Scholar 

  66. Coleman, P. Superconductivity – On the verge of magnetism. Nature 406, 580–581 (2000); Superconductivity – Magnetic glue exposed. Nature 410, 320–321 (2001)

    Article  ADS  CAS  Google Scholar 

  67. Flouquet, J. & Buzdin, A. Ferromagnetic superconductors. Phys. World 15, 41–46 (2002)

    Article  CAS  Google Scholar 

  68. Aoki, D. et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature 413, 613–616 (2001)

    Article  ADS  CAS  Google Scholar 

  69. Akazawa, T. et al. Pressure-induced superconductivity in UIr. J. Phys. Soc. Jpn 73, 3129–3134 (2004)

    Article  ADS  CAS  Google Scholar 

  70. Shimizu, K. et al. Superconductivity in the nonmagnetic state of iron under pressure. Nature 412, 316–318 (2001)

    Article  ADS  CAS  Google Scholar 

  71. Pines, D. Spin excitations and superconductivity in cuprate oxide and heavy electron superconductors. Physica B 163, 78–88 (1990)

    Article  ADS  CAS  Google Scholar 

  72. Moriya, T., Takahashi, Y. & Ueda, K. Antiferromagnetic spin fluctuations and superconductivity in two-dimensional metals — a possible model for high Tc oxides. J. Phys. Soc. Jpn 59, 2905–2915 (1990)

    Article  ADS  CAS  Google Scholar 

  73. Monthoux, P. et al. Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides. Phys. Rev. Lett. 67, 3448–3451 (1991)

    Article  ADS  CAS  Google Scholar 

  74. Wollman, D. A. et al. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb DC SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993)

    Article  ADS  CAS  Google Scholar 

  75. Tsuei, C. C. et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YbA2Cu3O7-δ . Phys. Rev. Lett. 73, 593–596 (1994)

    Article  ADS  CAS  Google Scholar 

  76. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: The ‘plain vanilla’ version of RVB. J. Phys. Condens. Matter 16, R755–R769 (2004)

    Article  CAS  Google Scholar 

  77. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high temperature superconductivity. Preprint at 〈http://arxiv.org/abs/cond-mat/0410445v1〉 (2004)

  78. Arrigoni, E., Fradkin, E. & Kivelson, S. A. Mechanism of high-temperature superconductivity in a striped Hubbard model. Phys. Rev. B 69, 214519 (2004)

    Article  ADS  Google Scholar 

  79. Baskaran, G. Mott insulator to high Tc superconductor via pressure: Resonating valence bond theory and prediction of new systems. Phys. Rev. Lett. 90 (19). 197007 (2003)

    Article  ADS  CAS  Google Scholar 

  80. Barzykin, V. & Pines, D. Phenomenological model of protected behaviour in the pseudogap state of underdoped cuprate superconductors. Phys. Rev. Lett. 96, 247002 (2006)

    Article  ADS  Google Scholar 

  81. Monthoux, P. Migdal’s theorem and the pseudogap. Phys. Rev. B 68, 064408 (2003)

    Article  ADS  Google Scholar 

  82. Monthoux, P. Diagrammatic perturbation theory and the pseudogap. Phys. Rev. B 70, 144403 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Lonzarich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monthoux, P., Pines, D. & Lonzarich, G. Superconductivity without phonons. Nature 450, 1177–1183 (2007). https://doi.org/10.1038/nature06480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06480

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing