Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The origin of protein interactions and allostery in colocalization

Abstract

Two fundamental principles can account for how regulated networks of interacting proteins originated in cells. These are the law of mass action, which holds that the binding of one molecule to another increases with concentration, and the fact that the colocalization of molecules vastly increases their local concentrations. It follows that colocalization can amplify the effect on one protein of random mutations in another protein and can therefore, through natural selection, lead to interactions between proteins and to a startling variety of complex allosteric controls. It also follows that allostery is common and that homologous proteins can have different allosteric mechanisms. Thus, the regulated protein networks of organisms seem to be the inevitable consequence of natural selection operating under physical laws.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The evolution of interacting proteins and allostery by single mutations.
Figure 2: The effect of colocalization on binding.
Figure 3: Examples of fused protein domains in one organism that are homologous to separate domains in another organism.
Figure 4: Assemblies of homeodomain-containing proteins and haemoglobin.
Figure 5: Mechanisms of control by phosphorylation.
Figure 6: Diverse regulatory mechanisms in tyrosine kinases.

Similar content being viewed by others

References

  1. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  Google Scholar 

  2. Monod, J., Changeux, J. P. & Jacob, F. Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329 (1963).

    Article  CAS  Google Scholar 

  3. Beernink, P. T., Endrizzi, J. A., Alber, T. & Schachman, H. K. Assessment of the allosteric mechanism of aspartate transcarbamoylase based on the crystalline structure of the unregulated catalytic subunit. Proc. Natl Acad. Sci. USA 96, 5388–5393 (1999).

    Article  CAS  ADS  Google Scholar 

  4. Behe, M. J. Darwin's Black Box: The Biochemical Challenge to Evolution (The Free Press, New York, 2003).

    Google Scholar 

  5. Perutz, M. F. Stereochemistry of cooperative effects in haemoglobin. Nature 228, 726–739 (1970).

    Article  CAS  ADS  Google Scholar 

  6. Xu, D., Tsai, C. J. & Nussinov, R. Mechanism and evolution of protein dimerization. Protein Sci. 7, 533–544 (1998).

    Article  CAS  Google Scholar 

  7. Ispolatov, I., Yuryev, A., Mazo, I. & Maslov, S. Binding properties and evolution of homodimers in protein–protein interaction networks. Nucleic Acids Res. 33, 3629–3635 (2005).

    Article  CAS  Google Scholar 

  8. Liang, J., Kim, J. R., Boock, J. T., Mansell, T. J. & Ostermeier, M. Ligand binding and allostery can emerge simultaneously. Protein Sci. 16, 929–937 (2007).

    Article  CAS  Google Scholar 

  9. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  ADS  Google Scholar 

  10. Klemm, J. D. & Pabo, C. O. Oct-1 POU domain–DNA interactions: cooperative binding of isolated subdomains and effects of covalent linkage. Genes Dev. 10, 27–36 (1996).

    Article  CAS  Google Scholar 

  11. Robinson, C. R. & Sauer, R. T. Covalent attachment of Arc repressor subunits by a peptide linker enhances affinity for operator DNA. Biochemistry 35, 109–116 (1996).

    Article  CAS  Google Scholar 

  12. Predki, P. F. & Regan, L. Redesigning the topology of a four-helix-bundle protein: monomeric Rop. Biochemistry 34, 9834–9839 (1995).

    Article  CAS  Google Scholar 

  13. Liang, H., Sandberg, W. S. & Terwilliger, T. C. Genetic fusion of subunits of a dimeric protein substantially enhances its stability and rate of folding. Proc. Natl Acad. Sci. USA 90, 7010–7014 (1993).

    Article  CAS  ADS  Google Scholar 

  14. Pedersen, S., Bloch, P. L., Reeh, S. & Neidhardt, F. C. Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14, 179–190 (1978).

    Article  CAS  Google Scholar 

  15. Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E. M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnol. 25, 117–124 (2007).

    Article  CAS  Google Scholar 

  16. Noguchi, C. T. & Schechter, A. N. Sickle hemoglobin polymerization in solution and in cells. Annu. Rev. Biophys. Biophys. Chem. 14, 239–263 (1985).

    Article  CAS  Google Scholar 

  17. Fermi, G., Perutz, M. F., Shaanan, B. & Fourme, R. The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution. J. Mol. Biol. 175, 159–174 (1984).

    Article  CAS  Google Scholar 

  18. Bahadur, R. P., Chakrabarti, P., Rodier, F. & Janin, J. Dissecting subunit interfaces in homodimeric proteins. Proteins 53, 708–719 (2003).

    Article  CAS  Google Scholar 

  19. Fersht, A. R. Structure and Mechanism in Protein Science (Freeman, New York, 1999).

    Google Scholar 

  20. Eisenberg, D., Wesson, M. & Yanashita, M. Interpretation of protein folding and binding with atomic solvation parameters. Chem. Scr. 29A, 217–221 (1989).

    CAS  Google Scholar 

  21. Behe, M. J. The Edge of Evolution (Free Press, New York, 2007).

    Google Scholar 

  22. Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O. & Eisenberg, D. A combined algorithm for genome-wide prediction of protein function. Nature 402, 83–86 (1999).

    Article  CAS  ADS  Google Scholar 

  23. Bennett, M. J., Choe, S. & Eisenberg, D. Domain swapping: entangling alliances between proteins. Proc. Natl Acad. Sci. USA 91, 3127–3131 (1994).

    Article  CAS  ADS  Google Scholar 

  24. Schlunegger, M. P., Bennett, M. J. & Eisenberg, D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv. Protein Chem. 50, 61–122 (1997).

    Article  CAS  Google Scholar 

  25. Finn, R. D. et al. Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247–D251 (2006).

    Article  CAS  Google Scholar 

  26. Servant, F. et al. ProDom: automated clustering of homologous domains. Brief. Bioinform. 3, 246–251 (2002).

    Article  CAS  Google Scholar 

  27. Enright, A. J., Iliopoulos, I., Kyrpides, N. C. & Ouzounis, C. A. Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86–90 (1999).

    Article  CAS  ADS  Google Scholar 

  28. Thoden, J. B., Raushel, F. M., Benning, M. M., Rayment, I. & Holden, H. M. The structure of carbamoyl phosphate synthetase determined to 2.1 Å resolution. Acta Crystallogr. D Biol. Crystallogr. 55, 8–24 (1999).

    Article  CAS  Google Scholar 

  29. Snel, B., Bork, P. & Huynen, M. Genome evolution: gene fusion versus gene fission. Trends Genet. 16, 9–11 (2000).

    Article  CAS  Google Scholar 

  30. Kummerfeld, S. K. & Teichmann, S. A. Relative rates of gene fusion and fission in multi-domain proteins. Trends Genet. 21, 25–30 (2005).

    Article  CAS  Google Scholar 

  31. Fong, J. H., Geer, L. Y., Panchenko, A. R. & Bryant, S. H. Modeling the evolution of protein domain architectures using maximum parsimony. J. Mol. Biol. 366, 307–315 (2007).

    Article  CAS  Google Scholar 

  32. Pabo, C. O. & Sauer, R. T. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053–1095 (1992).

    Article  CAS  Google Scholar 

  33. Wolberger, C. Multiprotein–DNA complexes in transcriptional regulation. Annu. Rev. Biophys. Biomol. Struct. 28, 29–56 (1999).

    Article  CAS  Google Scholar 

  34. Panne, D., Maniatis, T. & Harrison, S. C. An atomic model of the interferon-β enhanceosome. Cell 129, 1111–1123 (2007).

    Article  CAS  Google Scholar 

  35. Wilson, D. S., Guenther, B., Desplan, C. & Kuriyan, J. High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 82, 709–719 (1995).

    Article  CAS  Google Scholar 

  36. Passner, J. M., Ryoo, H. D., Shen, L., Mann, R. S. & Aggarwal, A. K. Structure of a DNA-bound Ultrabithorax–Extradenticle homeodomain complex. Nature 397, 714–719 (1999).

    Article  CAS  ADS  Google Scholar 

  37. Piper, D. E., Batchelor, A. H., Chang, C. P., Cleary, M. L. & Wolberger, C. Structure of a HoxB1–Pbx1 heterodimer bound to DNA: role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 96, 587–597 (1999).

    Article  CAS  Google Scholar 

  38. LaRonde-LeBlanc, N. A. & Wolberger, C. Structure of HoxA9 and Pbx1 bound to DNA: Hox hexapeptide and DNA recognition anterior to posterior. Genes Dev. 17, 2060–2072 (2003).

    Article  CAS  Google Scholar 

  39. Klemm, J. D., Rould, M. A., Aurora, R., Herr, W. & Pabo, C. O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77, 21–32 (1994).

    Article  CAS  Google Scholar 

  40. Jacobson, E. M., Li, P., Leon- del-Rio, A., Rosenfeld, M. G. & Aggarwal, A. K. Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev. 11, 198–212 (1997).

    Article  CAS  Google Scholar 

  41. Li, T., Stark, M. R., Johnson, A. D. & Wolberger, C. Crystal structure of the Mata1/MATα2 homeodomain heterodimer bound to DNA. Science 270, 262–269 (1995).

    Article  CAS  ADS  Google Scholar 

  42. Tan, S. & Richmond, T. J. Crystal structure of the yeast MATα2/MCM1/DNA ternary complex. Nature 391, 660–666 (1998).

    Article  CAS  ADS  Google Scholar 

  43. Royer, W. E., Zhu, H., Gorr, T. A., Flores, J. F. & Knapp, J. E. Allosteric hemoglobin assembly: diversity and similarity. J. Biol. Chem. 280, 27477–27480 (2005).

    Article  CAS  Google Scholar 

  44. Royer, W. E., Hendrickson, W. A. & Chiancone, E. The 2.4 Å crystal structure of Scapharca dimeric hemoglobin. J. Biol. Chem. 264, 21052–21061 (1989).

    CAS  PubMed  Google Scholar 

  45. Barford, D., Hu, S. H. & Johnson, L. N. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J. Mol. Biol. 218, 233–260 (1991).

    Article  CAS  Google Scholar 

  46. Barford, D. & Johnson, L. N. The allosteric transition of glycogen phosphorylase. Nature 340, 609–616 (1989).

    Article  CAS  ADS  Google Scholar 

  47. Sprang, S. R. et al. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature 336, 215–221 (1988).

    Article  CAS  ADS  Google Scholar 

  48. Buchbinder, J. L., Rath, V. L. & Fletterick, R. J. Structural relationships among regulated and unregulated phosphorylases. Annu. Rev. Biophys. Biomol. Struct. 30, 191–209 (2001).

    Article  CAS  Google Scholar 

  49. Rath, V. L. & Fletterick, R. J. Parallel evolution in two homologues of phosphorylase. Nature Struct. Biol. 1, 681–690 (1994).

    Article  CAS  Google Scholar 

  50. Palm, D., Goerl, R. & Burger, K. J. Evolution of catalytic and regulatory sites in phosphorylases. Nature 313, 500–502 (1985).

    Article  CAS  ADS  Google Scholar 

  51. Hwang, P. K. & Fletterick, R. J. Convergent and divergent evolution of regulatory sites in eukaryotic phosphorylases. Nature 324, 80–84 (1986).

    Article  CAS  ADS  Google Scholar 

  52. Lee, S. Y. et al. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev. 17, 2552–2563 (2003).

    Article  CAS  Google Scholar 

  53. Doucleff, M. et al. Negative regulation of AAA+ ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria. J. Mol. Biol. 353, 242–255 (2005).

    Article  CAS  Google Scholar 

  54. De Carlo, S. et al. The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes Dev. 20, 1485–1495 (2006).

    Article  CAS  Google Scholar 

  55. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    Article  CAS  Google Scholar 

  56. Neet, K. & Hunter, T. Vertebrate non-receptor protein-tyrosine kinase families. Genes Cells 1, 147–169 (1996).

    Article  CAS  Google Scholar 

  57. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  Google Scholar 

  58. Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src-family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    Article  CAS  ADS  Google Scholar 

  59. Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Article  CAS  ADS  Google Scholar 

  60. Brasher, B. B. & Van Etten, R. A. c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory sites. J. Biol. Chem. 275, 35631–35637 (2000).

    Article  CAS  Google Scholar 

  61. Deindl, S. et al. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell 129, 735–746 (2007).

    Article  CAS  Google Scholar 

  62. Lietha, D. et al. Structural basis for the autoinhibition of focal adhesion kinase. Cell 129, 1177–1187 (2007).

    Article  CAS  Google Scholar 

  63. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  64. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).

    Article  CAS  Google Scholar 

  65. Hubbard, S. R. & Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373–398 (2000).

    Article  CAS  Google Scholar 

  66. Zhang, X., Gureasko, J., Shen, K., Cole, P. A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137–1149 (2006).

    Article  CAS  Google Scholar 

  67. Deeds, E. J., Ashenberg, O., Gerardin, J. & Shakhnovich, E. I. Robust protein–protein interactions in crowded cellular environments. Proc. Natl Acad. Sci. USA 104, 14952–14957 (2007).

    Article  CAS  ADS  Google Scholar 

  68. Royer, W. E. . High-resolution crystallographic analysis of a co-operative dimeric hemoglobin. J. Mol. Biol. 235, 657–681 (1994).

    Article  CAS  Google Scholar 

  69. Flores, J. F. et al. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proc. Natl Acad. Sci. USA 102, 2713–2718 (2005).

    Article  CAS  ADS  Google Scholar 

  70. Lin, K., Rath, V. L., Dai, S. C., Fletterick, R. J. & Hwang, P. K. A protein phosphorylation switch at the conserved allosteric site in GP. Science 273, 1539–1542 (1996).

    Article  CAS  ADS  Google Scholar 

  71. Cho, H. S. & Leahy, D. J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297, 1330–1333 (2002).

    Article  CAS  ADS  Google Scholar 

  72. Garrett, T. P. et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell 110, 763–773 (2002).

    Article  CAS  Google Scholar 

  73. Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. K. Aggarwal, R. E. Dickerson, S. C. Harrison, L. N. Johnson, E. M. Marcotte, M. Robertson, W. E. Royer, M. Seeliger, D. E. Wemmer, C. Wolberger, T. O. Yeates and many other colleagues for comments. We thank S. Deindl, L. Leighton, W. E. Royer, D. E, Wemmer and X. Zhang for assistance with the figures. Support from the Howard Hughes Medical Institute, the National Institutes of Health, the US Department of Energy Office of Biological & Environmental Research, and the National Science Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Additional information

Correspondence should be addressed to the authors (david@mbi.ucla.edu; kuriyan@berkeley.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuriyan, J., Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007). https://doi.org/10.1038/nature06524

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06524

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing