Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bv8 regulates myeloid-cell-dependent tumour angiogenesis

Abstract

Bone-marrow-derived cells facilitate tumour angiogenesis, but the molecular mechanisms of this facilitation are incompletely understood. We have previously shown that the related EG-VEGF and Bv8 proteins, also known as prokineticin 1 (Prok1) and prokineticin 2 (Prok2), promote both tissue-specific angiogenesis and haematopoietic cell mobilization. Unlike EG-VEGF, Bv8 is expressed in the bone marrow. Here we show that implantation of tumour cells in mice resulted in upregulation of Bv8 in CD11b+Gr1+ myeloid cells. We identified granulocyte colony-stimulating factor as a major positive regulator of Bv8 expression. Anti-Bv8 antibodies reduced CD11b+Gr1+ cell mobilization elicited by granulocyte colony-stimulating factor. Adenoviral delivery of Bv8 into tumours was shown to promote angiogenesis. Anti-Bv8 antibodies inhibited growth of several tumours in mice and suppressed angiogenesis. Anti-Bv8 treatment also reduced CD11b+Gr1+ cells, both in peripheral blood and in tumours. The effects of anti-Bv8 antibodies were additive to those of anti-Vegf antibodies or cytotoxic chemotherapy. Thus, Bv8 modulates mobilization of CD11b+Gr1+ cells from the bone marrow during tumour development and also promotes angiogenesis locally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of Bv8 expression in vitro and in vivo.
Figure 2: Expression of Bv8 in tumour-associated myeloid cells, and effects of anti-Bv8 antibodies on tumour growth.
Figure 3: Anti-Bv8 treatment reduces CD11b + Gr1 + cells in the peripheral blood and the tumours.
Figure 4: Bv8 regulates tumour angiogenesis.
Figure 5: Anti-Bv8 has additive effects with anti-Vegf or cytotoxic chemotherapy.

Similar content being viewed by others

References

  1. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Carmeliet, P. Angiogenesis in health and disease. Nature Med. 9, 653–660 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Folkman, J. & Klagsbrun, M. Angiogenic factors. Science 235, 442–447 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Dong, J. et al. VEGF-null cells require PDGFR α signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J. 23, 2800–2810 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rafii, S., Lyden, D., Benezra, R., Hattori, K. & Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature Rev. Cancer 2, 826–835 (2002)

    Article  CAS  Google Scholar 

  9. Nolan, D. J. et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 21, 1546–1558 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature Med. 9, 789–795 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. Shojaei, F. et al. Tumor refrectoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnol. 25, 911–920 (2007)

    Article  CAS  Google Scholar 

  15. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Kempen, L. C., de Visser, K. E. & Coussens, L. M. Inflammation, proteases and cancer. Eur. J. Cancer 42, 728–734 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Li, M., Bullock, C. M., Knauer, D. J., Ehlert, F. J. & Zhou, Q. Y. Identification of two prokineticin cDNAs: recombinant proteins potently contract gestrointestinal smooth muscle. Mol. Pharmacol. 59, 692–698 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. LeCouter, J. et al. The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: localization of Bv8 receptors to endothelial cells. Proc. Natl Acad. Sci. USA 100, 2685–2690 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mollay, C. et al. Bv8, a small protein from frog skin and its homologue from snake venom induce hyperalgesia in rats. Eur. J. Pharmacol. 374, 189–196 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. Masuda, Y. et al. Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem. Biophys. Res. Commun. 293, 396–402 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Lin, D. C. et al. Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J. Biol. Chem. 277, 19276–19280 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. LeCouter, J., Lin, R. & Ferrara, N. Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nature Med. 8, 913–917 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. LeCouter, J., Zlot, C., Tejada, M., Peale, F. & Ferrara, N. Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc. Natl Acad. Sci. USA 101, 16813–16818 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dorsch, M. et al. PK1/EG-VEGF induces monocyte differentiation and activation. J. Leukoc. Biol. 78, 426–434 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Dahl, R. et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor. Nature Immunol. 4, 1029–1036 (2003)

    Article  CAS  Google Scholar 

  28. Lagasse, E. & Weissman, I. L. Flow cytometric identification of murine neutrophils and monocytes. J. Immunol. Methods 197, 139–150 (1996)

    Article  CAS  PubMed  Google Scholar 

  29. Metcalf, D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339, 27–30 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Christopher, M. J. & Link, D. C. Regulation of neutrophil homeostasis. Curr. Opin. Hematol. 14, 3–8 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. Mueller, M. M. & Fusenig, N. E. Tumor–stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation 70, 486–497 (2002)

    Article  PubMed  Google Scholar 

  32. Liang, W. C. et al. Cross-species VEGF-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J. Biol. Chem. 281, 951–961 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Okazaki, T. et al. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int. Immunol. 18, 1–9 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Sanz, A., Rodriguez-Barbero, A., Bentley, M. D., Ritman, E. L. & Romero, J. C. Three-dimensional microcomputed tomography of renal vasculature in rats. Hypertension 31, 440–444 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Maehara, N. Experimental microcomputed tomography study of the 3D microangioarchitecture of tumors. Eur. Radiol. 13, 1559–1565 (2003)

    Article  PubMed  Google Scholar 

  36. Kwon, H. M. et al. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J. Clin. Invest. 101, 1551–1556 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neben, S., Marcus, K. & Mauch, P. Mobilization of hematopoietic stem and progenitor cell subpopulations from the marrow to the blood of mice following cyclophosphamide and/or granulocyte colony-stimulating factor. Blood 81, 1960–1967 (1993)

    CAS  PubMed  Google Scholar 

  38. Kavgaci, H., Ozdemir, F., Aydin, F., Yavuz, A. & Yavuz, M. Endogenous granulocyte colony-stimulating factor (G-CSF) levels in chemotherapy-induced neutropenia and in neutropenia related with primary diseases. J. Exp. Clin. Cancer Res. 21, 475–479 (2002)

    CAS  PubMed  Google Scholar 

  39. Cheng, M. Y. et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417, 405–410 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Matsumoto, S. et al. Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc. Natl Acad. Sci. USA 103, 4140–4145 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohki, Y. et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J. 19, 2005–2007 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. Hirbe, A. C. et al. Granulocyte colony-stimulating factor enhances bone tumor growth in mice in an osteoclast-dependent manner. Blood 109, 3424–3431 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eyles, J. L., Roberts, A. W., Metcalf, D. & Wicks, I. P. Granulocyte colony-stimulating factor and neutrophils—forgotten mediators of inflammatory disease. Nature Clin. Pract. Rheumatol. 2, 500–510 (2006)

    Article  CAS  Google Scholar 

  44. Tomayko, M. M. & Reynolds, C. P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148–154 (1989)

    Article  CAS  PubMed  Google Scholar 

  45. Hida, K. et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64, 8249–8255 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Flow Cytometry Laboratory and the Animal Care Facility for their help. We express our appreciation to G. Fuh, A. Chuntarapai, K. Schroeder and the Antibody Technology group. We acknowledge S. Beddha for immunohistochemistry. We also thank J. LeCouter and M. Singh for reading the manuscript.

Author Contributions F.S., X.W. and C.Z. contributed equally to this work. F.S. and N.F. wrote the manuscript. F.S., X.W., C.Z., L.Y., X.-H.L., J.Y., D.B., C.B., F.V.P., N.v.B., C.H., J.R., M.T., R.A.D.C., Y.G.M and N.F. performed experiments, designed research and analysed data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Napoleone Ferrara.

Ethics declarations

Competing interests

The authors are employees and shareholders of Genentech Inc.

Supplementary information

Supplementary Information

The file contains Supplementary Notes and Supplementary Figures S1-S12 with Legends. (PDF 1281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaei, F., Wu, X., Zhong, C. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007). https://doi.org/10.1038/nature06348

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06348

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing