Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

White dwarf stars with carbon atmospheres

Abstract

White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8–10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for 80 per cent of known white dwarfs, by an additional hydrogen layer1,2,3. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4–7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fit to the optical spectra and energy distribution for a carbon-rich white dwarf.

Similar content being viewed by others

References

  1. Iben, I. On the frequency of planetary nebula nuclei powered by helium burning and on the frequency of white dwarfs with hydrogen-deficient atmospheres. Astrophys. J. 277, 333–354 (1984)

    Article  ADS  CAS  Google Scholar 

  2. Koester, D. & Schoenberner, D. Evolution of white dwarfs. Astron. Astrophys. 154, 125–134 (1986)

    ADS  CAS  Google Scholar 

  3. D’Antona, F. & Mazzitelli, I. Evolutionary times of white dwarfs—Long or short? IAU Colloq. 95, 635–637 (1987)

    ADS  Google Scholar 

  4. Nousek, J. A. et al. H 1504 + 65—an extraordinarily hot compact star devoid of hydrogen and helium. Astrophys. J. 309, 230–240 (1986)

    Article  ADS  CAS  Google Scholar 

  5. Werner, K. NLTE analysis of the unique pre-white dwarf H 1504 + 65. Astron. Astrophys. 251, 147–160 (1991)

    ADS  CAS  Google Scholar 

  6. Werner, K. & Wolff, B. The EUV spectrum of the unique bare stellar core H1504+65. Astron. Astrophys. 347, L9–L13 (1999)

    ADS  CAS  Google Scholar 

  7. Werner, K., Rauch, T., Barstow, M. A. & Kruk, J. W. Chandra and FUSE spectroscopy of the hot bare stellar core H 1504+65. Astron. Astrophys. 421, 1169–1183 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Pelletier, C., Fontaine, G., Wesemael, F., Michaud, G. & Wegner, G. Carbon pollution in helium-rich white dwarf atmospheres. Time-dependent calculations of the dredge-up process. Astrophys. J. 307, 242–252 (1986)

    Article  ADS  CAS  Google Scholar 

  9. Dufour, P., Bergeron, P. & Fontaine, G. Detailed spectroscopic and photometric analysis of DQ white dwarfs. Astrophys. J. 627, 404–417 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Wegner, G. & Koester, D. Atmospheric analysis of the carbon white dwarf G227–5. Astrophys. J. 288, 746–750 (1985)

    Article  ADS  CAS  Google Scholar 

  11. Thejll, P., Shipman, H. L., MacDonald, J. & Macfarland, W. M. An atmospheric analysis of the carbon-rich white dwarf G35 – 26. Astrophys. J. 361, 197–206 (1990)

    Article  ADS  CAS  Google Scholar 

  12. Desharnais, S., Wesemael, F., Chayer, P. & Kruk, J. W. FUSE observation of cool DB white dwarfs. ASP Conf. Ser. 372, 265–268 (2007)

    ADS  CAS  Google Scholar 

  13. Liebert, J. et al. SDSS white dwarfs with spectra showing atomic oxygen and/or carbon lines. Astron. J. 126, 2521–2528 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Beauchamp, A. Détermination des Paramètres Atmosphériques des Étoiles Naines Blanches de Type DB. PhD thesis, Montréal. (1995)

    Google Scholar 

  15. Behara, N. & Jeffery, C. S. LTE model atmosphere with new opacities. 1. Methods and general properties. Astron. Astrophys. 451, 643–650 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Eisenstein, D. J. et al. A catalog of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey data release 4. Astrophys. J. 167 (Suppl.). 40–58 (2006)

    Article  Google Scholar 

  17. Herwig, F., Blöcker, T., Langer, N. & Driebe, T. On the formation of hydrogen-deficient post-AGB stars. Astron. Astrophys. 349, L5–L8 (1999)

    ADS  CAS  Google Scholar 

  18. Werner, K. & Herwig, F. The elemental abundances in bare planetary nebula central stars and the shell burning in AGB stars. Publ. Astron. Soc. Pacif. 118, 183–204 (2006)

    Article  ADS  Google Scholar 

  19. Garcia-Berro, E. & Iben, I. On the formation and evolution of super-asymptotic giant branch stars with cores processed by carbon burning. 1: SPICA to Antares. Astrophys. J. 434, 306–318 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Garcia-Berro, E., Ritossa, C. & Iben, I. On the evolution of stars that form electron-degenerate cores processed by carbon burning. III. The inward propagation of a carbon-burning flame and other properties of a 9M model star. Astrophys. J. 485, 765–784 (1997)

    Article  ADS  Google Scholar 

  21. Ritossa, C., Garcia-Berro, E. & Iben, I. On the evolution of stars that form electron-degenerate cores processed by carbon burning. V. Shell convection sustained by helium burning, transient neon burning, dredge-out, URCA cooling, and other properties of an 11 M population I model star. Astrophys. J. 515, 381–397 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Koester, D. & Knist, S. New DQ white dwarfs in the Sloan Digital Sky Survey DR4: confirmation of two sequences. Astron. Astrophys. 454, 951–956 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Holberg, J. B. Oswalt, T. D. & Sion, E. M. A determination of the local density of white dwarf stars. Astrophys. J. 571, 512–518 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the NSF for work on SDSS white dwarfs. This work was also supported in part by the NSERC (Canada).

Author Contributions P.D. developed the models, performed the analysis and wrote the paper. J.L. was involved in the discovery of the SDSS spectra. G.F. elaborated the evolutionary scenario discussed in the text. N.B. provided opacity data necessary to the computation of the models. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dufour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufour, P., Liebert, J., Fontaine, G. et al. White dwarf stars with carbon atmospheres. Nature 450, 522–524 (2007). https://doi.org/10.1038/nature06318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06318

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing