Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Producing primate embryonic stem cells by somatic cell nuclear transfer

A Corrigendum to this article was published on 10 December 2014

Abstract

Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatograms of the rhesus macaque mitochondrial D-loop hypervariable region 2 informative domain 1 (RhDHV2 ID1).
Figure 2: Morphological and immunocytochemical analysis of CRES cells and their differentiated derivatives.
Figure 3: Cytogenetic analysis of CRES cells.

Similar content being viewed by others

References

  1. McKay, R. Stem cells–hype and hope. Nature 406, 361–364 (2000)

    Article  ADS  Google Scholar 

  2. Drukker, M. & Benvenisty, N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol. 22, 136–141 (2004)

    Article  CAS  Google Scholar 

  3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006); published online 10 August 2006

    Article  CAS  Google Scholar 

  4. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007); published online 6 June 2007

    Article  ADS  CAS  Google Scholar 

  5. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007); published online 6 June 2007

    Article  ADS  CAS  Google Scholar 

  6. Rideout, W. M., Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27 (2002)

    Article  CAS  Google Scholar 

  7. Barberi, T. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nature Biotechnol. 21, 1200–1207 (2003)

    Article  CAS  Google Scholar 

  8. Wilmut, I. et al. Somatic cell nuclear transfer. Nature 419, 583–586 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Mitalipov, S. M., Yeoman, R. R., Nusser, K. D. & Wolf, D. P. Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol. Reprod. 66, 1367–1373 (2002)

    Article  CAS  Google Scholar 

  10. Simerly, C. et al. Molecular correlates of primate nuclear transfer failures. Science 300, 297 (2003)

    Article  Google Scholar 

  11. Hall, V. J. et al. Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer. Hum. Reprod. 22, 52–62 (2007)

    Article  CAS  Google Scholar 

  12. Mitalipov, S. M. et al. Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum. Reprod. 22, 2232–2242 (2007)

    Article  CAS  Google Scholar 

  13. Birky, C. W. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc. Natl Acad. Sci. USA 92, 11331–11338 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Bowles, E. J., Campbell, K. H. & St John, J. C. Nuclear transfer: preservation of a nuclear genome at the expense of its associated mtDNA genome(s). Curr. Top. Dev. Biol. 77, 251–290 (2007)

    Article  CAS  Google Scholar 

  15. Penedo, M. C. et al. Microsatellite typing of the rhesus macaque MHC region. Immunogenetics 57, 198–209 (2005)

    Article  CAS  Google Scholar 

  16. Ferguson, B. et al. Single nucleotide polymorphisms (SNPs) distinguish Indian-origin and Chinese-origin rhesus macaques (Macaca mulatta). BMC Genomics 8, 43 (2007)

    Article  Google Scholar 

  17. Mitalipov, S. et al. Isolation and characterization of novel rhesus monkey embryonic stem cell lines. Stem Cells 24, 2177–2186 (2006)

    Article  CAS  Google Scholar 

  18. Byrne, J. A., Mitalipov, S. M., Clepper, L. & Wolf, D. P. Transcriptional profiling of rhesus monkey embryonic stem cells. Biol. Reprod. 75, 908–915 (2006)

    Article  CAS  Google Scholar 

  19. Byrne, J. A., Clepper, L., Wolf, D. P. & Mitalipov, S. M. in International Society for Stem Cell Research, 5th Annual meeting 52 (Cairns, Queensland, Australia, 2007)

    Google Scholar 

  20. Simerly, C. et al. Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: overcoming defects caused by meiotic spindle extraction. Dev. Biol. 276, 237–252 (2004)

    Article  CAS  Google Scholar 

  21. Zhou, Q. et al. A comparative approach to somatic cell nuclear transfer in the rhesus monkey. Hum. Reprod. 21, 2564–2571 (2006)

    Article  CAS  Google Scholar 

  22. Ng, S. C. et al. The first cell cycle after transfer of somatic cell nuclei in a non-human primate. Development 131, 2475–2484 (2004)

    Article  CAS  Google Scholar 

  23. Yang, X. et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genet. 39, 295–302 (2007)

    Article  CAS  Google Scholar 

  24. Munsie, M. J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10, 989–992 (2000)

    Article  CAS  Google Scholar 

  25. Wakayama, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Mombaerts, P. Therapeutic cloning in the mouse. Proc. Natl Acad. Sci. USA 100, 11924–11925 (2003); published online 29 August 2003

    Article  ADS  CAS  Google Scholar 

  28. Wakayama, S. et al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 24, 2023–2033 (2006); published online 11 May 2006

    Article  CAS  Google Scholar 

  29. Brambrink, T., Hochedlinger, K., Bell, G. & Jaenisch, R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl Acad. Sci. USA 103, 933–938 (2006); published online 17 January 2006

    Article  ADS  CAS  Google Scholar 

  30. Lanza, R. P. et al. Generation of histocompatible tissues using nuclear transplantation. Nature Biotechnol. 20, 689–696 (2002); published online 3 June 2002

    Article  CAS  Google Scholar 

  31. Martin, M. J. et al. Skin graft survival in genetically identical cloned pigs. Cloning Stem Cells 5, 117–121 (2003)

    Article  CAS  Google Scholar 

  32. Yang, J. et al. Epigenetic marks in cloned rhesus monkey embryos: comparison with counterparts produced in vitro . Biol. Reprod. 76, 36–42 (2007)

    Article  CAS  Google Scholar 

  33. Wakayama, S. et al. Establishment of mouse embryonic stem cell lines from somatic cell nuclei by nuclear transfer into aged, fertilization-failure mouse oocytes. Curr. Biol. 17, R120–R121 (2007)

    Article  CAS  Google Scholar 

  34. Byrne, J., Mitalipov, S. & Wolf, D. Current progress with primate embryonic stem cells. Curr. Stem Cell Res. Ther. 1, 127–138 (2006)

    Article  CAS  Google Scholar 

  35. Zelinski-Wooten, M. B., Hutchison, J. S., Hess, D. L., Wolf, D. P. & Stouffer, R. L. Follicle stimulating hormone alone supports follicle growth and oocyte development in gonadotrophin-releasing hormone antagonist-treated monkeys. Hum. Reprod. 10, 1658–1666 (1995)

    Article  CAS  Google Scholar 

  36. Bavister, B. D. & Yanagimachi, R. The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro . Biol. Reprod. 16, 228–237 (1977)

    Article  CAS  Google Scholar 

  37. McKiernan, S. H. & Bavister, B. D. Culture of one-cell hamster embryos with water soluble vitamins: pantothenate stimulates blastocyst production. Hum. Reprod. 15, 157–164 (2000)

    Article  CAS  Google Scholar 

  38. Kuo, H. C. et al. Differentiation of monkey embryonic stem cells into neural lineages. Biol. Reprod. 68, 1727–1735 (2003)

    Article  CAS  Google Scholar 

  39. Pearson, P. L. et al. Report of the committee on comparative mapping. Cytogenet. Cell Genet. 25, 82–95 (1979)

    Article  CAS  Google Scholar 

  40. Rogers, J. et al. An initial genetic linkage map of the rhesus macaque (Macaca mulatta) genome using human microsatellite loci. Genomics 87, 30–38 (2006)

    Article  CAS  Google Scholar 

  41. Domingo-Roura, X., Lopez-Giraldez, T., Shinohara, M. & Takenaka, O. Hypervariable microsatellite loci in the Japanese macaque (Macaca fuscata) conserved in related species. Am. J. Primatol. 43, 357–360 (1997)

    Article  CAS  Google Scholar 

  42. St John, J. C. & Schatten, G. Paternal mitochondrial DNA transmission during nonhuman primate nuclear transfer. Genetics 167, 897–905 (2004)

    Article  CAS  Google Scholar 

  43. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nature Genet. 29, 365–371 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Division of Animal Resources and the Endocrine Services Cores at the Oregon National Primate Research Center for assistance and technical services. We thank M. Sparman, C. Ramsey and V. Dighe of the Assisted Reproductive Technology Core for their embryological and logistical assistance; J. Fanton and D. Jacobs for laparoscopic oocyte retrievals; B. Ferguson for performing the SNP analysis; C. Penedo for microsatellite analysis; and R. Stouffer, M. Grompe and R. Reijo Pera for reviewing this manuscript. Microarray assays were performed in the Affymetrix Microarray Core of the OHSU Gene Microarray Shared Resource. This study was supported by funds from ONPRC and NIH grants to S. Mitalipov, R. Stouffer and D. Dorsa.

Author Contributions S.M.M. and J.A.B. designed experiments, conducted SCNT and ES cell derivation. L.L.C. performed DNA/RNA isolations and stemness gene expression. J.A.B. analysed the microarray data and performed the mitochondrial DNA analysis. D.A.P. assisted with ES cell derivation and performed ES cell culture, characterization and differentiation. W.G.S. and M.N. performed the cytogenetic analysis. S.G. analysed teratomas. S.M.M., J.A.B. and D.P.W. analysed the data and wrote the paper.

Microarray data, including CEL and CHP files, and Supplementary Data files containing microarray analyses (Supplementary Data 3–7) have been deposited in the Gene Expression Omnibus (GEO) database with accession number GSE7748 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mitalipov.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-9 with Legends, Supplementary Tables 1-5 and the MIAME Checklist. (PDF 1085 kb)

Supplementary Video

The file contains Supplementary Video 1 showing contracting cardiomyocytes derived from differentiated CRES cell lines. (MOV 10738 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, J., Pedersen, D., Clepper, L. et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450, 497–502 (2007). https://doi.org/10.1038/nature06357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06357

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing