Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Portability of paddle motif function and pharmacology in voltage sensors

Abstract

Voltage-sensing domains enable membrane proteins to sense and react to changes in membrane voltage. Although identifiable S1–S4 voltage-sensing domains are found in an array of conventional ion channels and in other membrane proteins that lack pore domains, the extent to which their voltage-sensing mechanisms are conserved is unknown. Here we show that the voltage-sensor paddle, a motif composed of S3b and S4 helices, can drive channel opening with membrane depolarization when transplanted from an archaebacterial voltage-activated potassium channel (KvAP) or voltage-sensing domain proteins (Hv1 and Ci-VSP) into eukaryotic voltage-activated potassium channels. Tarantula toxins that partition into membranes can interact with these paddle motifs at the protein–lipid interface and similarly perturb voltage-sensor activation in both ion channels and proteins with a voltage-sensing domain. Our results show that paddle motifs are modular, that their functions are conserved in voltage sensors, and that they move in the relatively unconstrained environment of the lipid membrane. The widespread targeting of voltage-sensor paddles by toxins demonstrates that this modular structural motif is an important pharmacological target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transfer of the voltage-sensor paddle motif from KvAP to Kv2.1 channels.
Figure 2: Sensitivity of KvAP paddle chimaeras to extracellular tarantula toxins.
Figure 3: Structural analysis of the toxin–paddle interaction.
Figure 4: Transfer of the voltage-sensor paddle motif from Hv1 or Ci-VSP into Kv2.1 channels.
Figure 5: Sensitivity of a Hv1 paddle chimaera and the Hv1 proton channel to tarantula toxins.
Figure 6: Tarantula toxins interacting with voltage-sensor paddle motifs.

Similar content being viewed by others

References

  1. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kubo, Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362, 127–133 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Li-Smerin, Y. & Swartz, K. J. Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proc. Natl Acad. Sci. USA 95, 8585–8589 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu, Z., Klem, A. M. & Ramu, Y. Ion conduction pore is conserved among potassium channels. Nature 413, 809–813 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Long, S. B., Campbell, E. B. & Mackinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Lee, S. Y., Lee, A., Chen, J. & Mackinnon, R. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc. Natl Acad. Sci. USA 102, 15441–15446 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+channel. Nature 423, 42–48 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Tombola, F., Pathak, M. M. & Isacoff, E. Y. How far will you go to sense voltage? Neuron 48, 719–725 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. Ahern, C. A. & Horn, R. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 27, 303–307 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Swartz, K. J. Towards a structural view of gating in potassium channels. Nature Rev. Neurosci. 5, 905–916 (2004)

    Article  CAS  Google Scholar 

  13. Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Lee, S. Y. & MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430, 232–235 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Schmidt, D., Jiang, Q. X. & MacKinnon, R. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444, 775–779 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Cuello, L. G., Cortes, D. M. & Perozo, E. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306, 491–495 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ahern, C. A. & Horn, R. Specificity of charge-carrying residues in the voltage sensor of potassium channels. J. Gen. Physiol. 123, 205–216 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campos, F. V., Chanda, B., Roux, B. & Bezanilla, F. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc. Natl Acad. Sci. USA 104, 7904–7909 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grabe, M., Lai, H. C., Jain, M., Nung Jan, Y. & Yeh Jan, L. Structure prediction for the down state of a potassium channel voltage sensor. Nature 445, 550–553 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. Tombola, F., Pathak, M. M., Gorostiza, P. & Isacoff, E. Y. The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445, 546–549 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Chanda, B., Asamoah, O. K., Blunck, R., Roux, B. & Bezanilla, F. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436, 852–856 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ramsey, I. S., Moran, M. M., Chong, J. A. & Clapham, D. E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruta, V., Jiang, Y., Lee, A., Chen, J. & MacKinnon, R. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422, 180–185 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Frech, G. C., VanDongen, A. M., Schuster, G., Brown, A. M. & Joho, R. H. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340, 642–645 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Lu, Z., Klem, A. M. & Ramu, Y. Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J. Gen. Physiol. 120, 663–676 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    Article  CAS  PubMed  Google Scholar 

  29. Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N. & Jan, L. Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila . Science 237, 770–775 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Soler-Llavina, G. J., Chang, T. H. & Swartz, K. J. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel. Neuron 52, 623–634 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Swartz, K. J. & MacKinnon, R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18, 665–673 (1997)

    Article  CAS  PubMed  Google Scholar 

  32. Swartz, K. J. & MacKinnon, R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18, 675–682 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. Li-Smerin, Y. & Swartz, K. J. Localization and molecular determinants of the hanatoxin receptors on the voltage-sensing domain of a K+ channel. J. Gen. Physiol. 115, 673–684 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li-Smerin, Y. & Swartz, K. J. Helical structure of the COOH terminus of S3 and its contribution to the gating modifier toxin receptor in voltage-gated ion channels. J. Gen. Physiol. 117, 205–218 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, H. C., Wang, J. M. & Swartz, K. J. Interaction between extracellular hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron 40, 527–536 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Phillips, L. R. et al. Voltage-sensor activation with a tarantula toxin as cargo. Nature 436, 857–860 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Swartz, K. J. Tarantula toxins interacting with voltage sensors in potassium channels. Toxicon 49, 213–230 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Ruta, V. & MacKinnon, R. Localization of the voltage-sensor toxin receptor on KvAP. Biochemistry 43, 10071–10079 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. Jung, H. J. et al. Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. Biochemistry 44, 6015–6023 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. Milescu, M. et al. Tarantula toxins interact with voltage sensors within lipid membranes. J. Gen. Physiol. 130, 497–511 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, A. G. Lipid–protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. Lampe, R. A. et al. Isolation and pharmacological characterization of omega-grammotoxin SIA, a novel peptide inhibitor of neuronal voltage-sensitive calcium channel responses. Mol. Pharmacol. 44, 451–460 (1993)

    CAS  PubMed  Google Scholar 

  43. Lee, C. W. et al. Solution structure and functional characterization of SGTx1, a modifier of Kv2.1 channel gating. Biochemistry 43, 890–897 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. Herrington, J. et al. Blockers of the delayed-rectifier potassium current in pancreatic β-cells enhance glucose-dependent insulin secretion. Diabetes 55, 1034–1042 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. Papazian, D. M. et al. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293–1301 (1995)

    Article  CAS  PubMed  Google Scholar 

  46. Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature doi:10.1038/nature06265 (this issue).

  47. Siemens, J. et al. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444, 208–212 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Swartz, K. J. & MacKinnon, R. An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 15, 941–949 (1995)

    Article  CAS  PubMed  Google Scholar 

  49. Garcia, M. L., Garcia-Calvo, M., Hidalgo, P., Lee, A. & MacKinnon, R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry 33, 6834–6839 (1994)

    Article  CAS  PubMed  Google Scholar 

  50. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Fontaine, M. Mayer, J. Mindell, S. Ramsey, S. Silberberg and members of the Swartz laboratory for discussions, and the NINDS DNA sequencing facility for DNA sequencing. We thank T. Kitaguchi for cloning KvAP and Y. Okamura for providing Ci-VSP complementary DNA. This work was supported by the Intramural Research Program of the NINDS, NIH. A.A.A. was partially supported by the NIH Undergraduate Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenton J. Swartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-6 and Supplementary Tables 1-3 with Legends. (PDF 2774 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alabi, A., Bahamonde, M., Jung, H. et al. Portability of paddle motif function and pharmacology in voltage sensors. Nature 450, 370–375 (2007). https://doi.org/10.1038/nature06266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06266

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing