Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cooperation and conflict in quorum-sensing bacterial populations

Abstract

It has been suggested that bacterial cells communicate by releasing and sensing small diffusible signal molecules in a process commonly known as quorum sensing (QS)1,2,3,4. It is generally assumed that QS is used to coordinate cooperative behaviours at the population level3,5. However, evolutionary theory predicts that individuals who communicate and cooperate can be exploited6,7,8,9,10. Here we examine the social evolution of QS experimentally in the opportunistic pathogen Pseudomonas aeruginosa, and show that although QS can provide a benefit at the group level, exploitative individuals can avoid the cost of producing the QS signal or of performing the cooperative behaviour that is coordinated by QS, and can therefore spread. We also show that a solution to the problem of exploitation is kin selection, if interacting bacterial cells tend to be close relatives. These results show that the problem of exploitation, which has been the focus of considerable attention in animal communication, also arises in bacteria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: QS-controlled public goods provide a benefit at the population level in QSM.
Figure 2: QS-dependent cooperation is costly.
Figure 3: QS is subject to cheating.
Figure 4: Kin selection and QS.

Similar content being viewed by others

References

  1. Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4, 249–258 (2006)

    Article  CAS  Google Scholar 

  2. Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Phil. Trans. R. Soc. B 362, 1241–1249 (2007)

    Article  CAS  Google Scholar 

  3. Henke, J. M. & Bassler, B. L. Bacterial social engagements. Trends Cell Biol. 14, 648–656 (2004)

    Article  CAS  Google Scholar 

  4. Williams, P., Winzer, K., Chan, W. C. & Camara, M. Look who's talking: communication and quorum sensing in the bacterial world. Phil. Trans. R. Soc. B 362, 1119–1134 (2007)

    Article  CAS  Google Scholar 

  5. Shapiro, J. A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81–104 (1998)

    Article  CAS  Google Scholar 

  6. Maynard Smith, J. & Harper, D. Animal Signals (Oxford Univ. Press, Oxford, 2003)

    Google Scholar 

  7. Lehmann, L. & Keller, L. The evolution of cooperation and altruism-a general framework and a classification of models. J. Evol. Biol. 19, 1365–1376 (2006)

    Article  CAS  Google Scholar 

  8. Hamilton, W. D. Genetical evolution of social behaviour. I & II. J. Theor. Biol. 7, 1–52 (1964)

    Article  ADS  CAS  Google Scholar 

  9. Frank, S. A. Foundations of Social Evolution (Princeton Univ. Press, Princeton, NJ, 1998)

    Book  Google Scholar 

  10. Ratnieks, F. L. W., Foster, K. R. & Wenseleers, T. Conflict resolution in insect societies. Annu. Rev. Entomol. 51, 581–608 (2006)

    Article  CAS  Google Scholar 

  11. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006)

    Article  CAS  Google Scholar 

  12. West, S. A., Griffin, A. S. & Gardner, A. Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20, 415–432 (2007)

    Article  CAS  Google Scholar 

  13. Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370 (2002)

    Article  CAS  Google Scholar 

  14. Brown, S. P. & Johnstone, R. A. Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc. R. Soc. Lond. B 268, 961–965 (2001)

    Article  CAS  Google Scholar 

  15. Venturi, V. Regulation of quorum sensing in Pseudomonas. . FEMS Microbiol. Rev. 30, 274–291 (2006)

    Article  CAS  Google Scholar 

  16. Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066–2079 (2003)

    Article  CAS  Google Scholar 

  17. Pesci, E. C., Pearson, J. P., Seed, P. C. & Iglewski, B. H. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J. Bacteriol. 179, 3127–3132 (1997)

    Article  CAS  Google Scholar 

  18. Latifi, A. et al. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21, 1137–1146 (1996)

    Article  CAS  Google Scholar 

  19. Fletcher, M. P. et al. A dual biosensor for 2-alkyl-4-quinolone quorum sensing signal molecules. Environ. Microbiol. 9, 2683–2693 (2007)

    Article  MathSciNet  CAS  Google Scholar 

  20. Schaber, J. A. et al. Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa . J. Med. Microbiol. 53, 841–853 (2004)

    Article  CAS  Google Scholar 

  21. Chhabra, S. R. et al. Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-l-homoserine lactone as immune modulators. J. Med. Chem. 46, 97–104 (2003)

    Article  CAS  Google Scholar 

  22. Ross-Gillespie, A., Gardner, A., West, S. A. & Griffin, A. S. Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170, 331–342 (2007)

    Article  Google Scholar 

  23. MacLean, R. C. & Gudelj, I. Resource competition and social conflict in experimental populations of yeast. Nature 441, 498–501 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA 103, 8487–8492 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Denervaud, V. et al. Characterization of cell-to-cell signaling-deficient Pseudomonas aeruginosa strains colonizing intubated patients. J. Clin. Microbiol. 42, 554–562 (2004)

    Article  CAS  Google Scholar 

  27. Salunkhe, P. et al. A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J. Bacteriol. 187, 4908–4920 (2005)

    Article  CAS  Google Scholar 

  28. Jones, A. M. et al. Identification of airborne dissemination of epidemic multiresistant strains of Pseudomonas aeruginosa at a CF centre during a cross infection outbreak. Thorax 58, 525–527 (2003)

    Article  CAS  Google Scholar 

  29. West, S. A., Pen, I. & Griffin, A. S. Conflict and cooperation—cooperation and competition between relatives. Science 296, 72–75 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Heurlier, K. et al. Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J. Bacteriol. 187, 4875–4883 (2005)

    Article  CAS  Google Scholar 

  31. Winzer, K. et al. The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J. Bacteriol. 182, 6401–6411 (2000)

    Article  CAS  Google Scholar 

  32. Chhabra, S. R. et al. Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogs of N-(3-oxohexanoyl)-l-homoserine lactone. J. Antibiot. (Tokyo) 46, 441–454 (1993)

    Article  CAS  Google Scholar 

  33. Diggle, S. P. et al. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J. Bacteriol. 184, 2576–2586 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Williams and R. Chhabra for the provision of AHL compounds; D. Jackson for comments on the manuscript; and A. Ross-Gillespie for help in analysing the data. We acknowledge funding from the Royal Society and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen P. Diggle or Stuart A. West.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Data with additional references and Supplementary Figures S1-S3 with Legends. (PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diggle, S., Griffin, A., Campbell, G. et al. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007). https://doi.org/10.1038/nature06279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06279

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing