Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila hygrosensation requires the TRP channels water witch and nanchung

Abstract

The ability to detect variations in humidity is critical for many animals. Birds, reptiles and insects all show preferences for specific humidities that influence their mating, reproduction and geographic distribution1,2. Because of their large surface area to volume ratio, insects are particularly sensitive to humidity, and its detection can influence their survival3,4,5,6,7. Two types of hygroreceptors exist in insects: one responds to an increase (moist receptor) and the other to a reduction (dry receptor) in humidity4,6,8. Although previous data indicated that mechanosensation might contribute to hygrosensation6,9, the cellular basis of hygrosensation and the genes involved in detecting humidity remain unknown. To understand better the molecular bases of humidity sensing, we investigated several genes encoding channels associated with mechanosensation, thermosensing or water transport. Here we identify two Drosophila melanogaster transient receptor potential channels needed for sensing humidity: CG31284, named by us water witch (wtrw), which is required to detect moist air, and nanchung (nan), which is involved in detecting dry air. Neurons associated with specialized sensory hairs in the third segment of the antenna express these channels, and neurons expressing wtrw and nan project to central nervous system regions associated with mechanosensation. Construction of the hygrosensing system with opposing receptors may allow an organism to very sensitively detect changes in environmental humidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioural preference and expression of wtrw and nan.
Figure 2: Hygrosensing behaviour of promoter- GAL4/UAS-TNT-H , mutant, RNAi and dominant-negative lines.
Figure 3: Electrophysiologic response to dry and moist air.
Figure 4: Central nervous system projection pattern of nompC-GAL4, nan-GAL4 and wtrw-GAL4 driving UAS-GFP.

Similar content being viewed by others

References

  1. Sayeed, O. & Benzer, S. Behavioral genetics of thermosensation and hygrosensation in Drosophila . Proc. Natl Acad. Sci. USA 93, 6079–6084 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shelford, V. E. A comparison of the responses of animals in gradient of environmental factors with particular reference to the method of reaction of representatives of the various groups from protozoa to mammals. Science 48, 225–230 (1918)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Altner, H., Sass, H. & Altner, I. Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in Periplaneta americana . Cell Tissue Res. 176, 389–405 (1977)

    Article  CAS  PubMed  Google Scholar 

  4. Tichy, H. Hygro- and thermoreceptive triad in antennal sensillum of the stick insect, Carausius morosus . J. Comp. Physiol. 132, 149–152 (1979)

    Article  Google Scholar 

  5. Yokohari, F. The coelocapitular sensillum, an antennal hygro- and thermoreceptive sensillum of the honey bee, Apis mellifera L. Cell Tissue Res. 233, 355–365 (1983)

    Article  CAS  PubMed  Google Scholar 

  6. Itoh, T., Yokohari, F. & Tominaga, Y. Two types of antennal hygro- and thermoreceptive sensilla of the cricket, Gryllus bimaculatus (De Geer). Zoolog. Sci. 1, 533–543 (1984)

    Google Scholar 

  7. Iwasaki, M., Itoh, T., Yokohari, F. & Tominaga, Y. Identification of antennal hygroreceptive sensillum and other sensilla of the firefly, Luciola cruciata . Zoolog. Sci. 12, 725–732 (1995)

    Article  Google Scholar 

  8. Yokohari, F. & Tateda, H. Moist and dry hygroreceptors for relative humidity of the cockroach, Periplaneta americana L. J. Comp. Physiol. 106, 137–152 (1976)

    Article  Google Scholar 

  9. Yokohari, F. Hygroreceptor mechanism in the antenna of the cockroach Periplaneta . J. Comp. Physiol. 124, 53–60 (1978)

    Article  Google Scholar 

  10. Welsh, M. J., Price, M. P. & Xie, J. Biochemical basis of touch perception: mechanosensory function of degenerin/epithelial Na+ channels. J. Biol. Chem. 277, 2369–2372 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Littleton, J. T. & Ganetzky, B. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26, 35–43 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Montell, C. Drosophila TRP channels. Pflugers Arch. 451, 19–28 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Desbordes, S. C., Chandraratna, D. & Sanson, B. A screen for genes regulating the wingless gradient in Drosophila embryos. Genetics 170, 749–766 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila . Nature 424, 81–84 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Yao, C. A., Ignell, R. & Carlson, J. R. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J. Neurosci. 25, 8359–8367 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995)

    Article  CAS  PubMed  Google Scholar 

  18. Shanbhag, S. R., Muller, B. & Steinbrecht, R. A. Atlas of olfactory organs of Drosophila melanogaster. 1. Types, external organization, innervation and distribution of olfactory sensilla. Int. J. Insect Morphol. Embryol. 28, 377–397 (1999)

    Article  Google Scholar 

  19. Stocker, R. F. Drosophila as a focus in olfactory research: mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression, and central connectivity. Microsc. Res. Tech. 55, 284–296 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. de Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Gong, Z. et al. Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila . J. Neurosci. 24, 9059–9066 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Homberg, U., Christensen, T. A. & Hildebrand, J. G. Structure and function of the deutocerebrum in insects. Annu. Rev. Entomol. 34, 477–501 (1989)

    Article  CAS  PubMed  Google Scholar 

  23. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Nishikawa, M., Yokohari, F. & Ishibashi, T. Central projections of the antennal cold receptor neurons and hygroreceptor neurons of the cockroach Periplaneta americana . J. Comp. Neurol. 361, 165–176 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. Keil, T. A. Functional morphology of insect mechanoreceptors. Microsc. Res. Tech. 39, 506–531 (1997)

    Article  CAS  PubMed  Google Scholar 

  26. Liu, L., Yermolaieva, O., Johnson, W. A., Abboud, F. M. & Welsh, M. J. Identification and function of thermosensory neurons in Drosophila larvae. Nature Neurosci. 6, 267–273 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Dhaka, A., Viswanath, V. & Patapoutian, A. Trp ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Niemeyer, B. A. Structure–function analysis of TRPV channels. Naunyn Schmiedebergs Arch. Pharmacol. 371, 285–294 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Rein, K., Zockler, M. & Heisenberg, M. A quantitative three-dimensional model of the Drosophila optic lobes. Curr. Biol. 9, 93–96 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. Wolff, T. in Drosophila Protocols (eds Sullivan, W., Ashburner, M. & Hawley, R. S.) 229–234 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 2000)

    Google Scholar 

Download references

Acknowledgements

We thank T. O. Moninger for help with scanning electron microscopy, Y. Ben-Shahar for discussions, and K. Knudtson and the University of Iowa DNA Core Facility for assistance with sequencing, oligonucleotide synthesis and real-time PCR experiments. Supported in part by an NRL grant (C.K.). M.J.W. is an Investigator of the HHMI.

Author Contributions L.L. was responsible for molecular cloning, behavioural tests, extracellular electrophysiology, statistical analysis and preparation of the manuscript. Y.L. performed molecular cloning, transgenic generation, fly genetics and in situ hybridization. R.W. and Q.D. did in vitro wtrw cDNA expression and electrophysiology (data not shown in manuscript). C.Y. and H.H. were responsible for immunohistochemistry of wtrw and nan promoter expression in the brain. C.K. provided nan mutant, promoter and rescue flies. M.J.W. supervised the work and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Welsh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Footnotes with additional references and Supplementary Figures S1-S9 with Legends. (PDF 5338 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Li, Y., Wang, R. et al. Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450, 294–298 (2007). https://doi.org/10.1038/nature06223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06223

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing