Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radio-frequency scanning tunnelling microscopy

Abstract

The scanning tunnelling microscope (STM)1 relies on localized electron tunnelling between a sharp probe tip and a conducting sample to attain atomic-scale spatial resolution. In the 25-year period since its invention, the STM has helped uncover a wealth of phenomena in diverse physical systems—ranging from semiconductors2,3 to superconductors4 to atomic and molecular nanosystems5,6,7,8,9. A severe limitation in scanning tunnelling microscopy is the low temporal resolution, originating from the diminished high-frequency response of the tunnel current readout circuitry. Here we overcome this limitation by measuring the reflection from a resonant inductor–capacitor circuit in which the tunnel junction is embedded, and demonstrate electronic bandwidths as high as 10 MHz. This 100-fold bandwidth improvement on the state of the art translates into fast surface topography as well as delicate measurements in mesoscopic electronics and mechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM have allowed us to perform thermometry at the nanometre scale. Furthermore, we have detected high-frequency mechanical motion with a sensitivity approaching 15 fm Hz-1/2. This sensitivity is on par with the highest available from nanoscale optical and electrical displacement detection techniques, and the radio-frequency STM is expected to be capable of quantum-limited position measurements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram and operation of the RF-STM.
Figure 2: Primary noise thermometry using the RF-STM.
Figure 3: RF-STM based displacement detection.

References

  1. Binning, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

    Article  ADS  CAS  Google Scholar 

  2. Stroscio, J. A., Feenstra, R. M. & Fein, A. P. Electronic structure of the Si(111)2 × 1 surface by scanning-tunneling microscopy. Phys. Rev. Lett. 57, 2579–2582 (1986)

    Article  ADS  CAS  Google Scholar 

  3. Wolkow, R. A. & Avouris, P. Atom-resolved surface chemistry using scanning tunneling microscopy. Phys. Rev. Lett. 60, 1049–1052 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990)

    Article  ADS  CAS  Google Scholar 

  6. Whitman, L. J., Stroscio, J. A., Dragoset, R. A. & Celotta, R. J. Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope. Science 251, 1206–1210 (1991)

    Article  ADS  CAS  Google Scholar 

  7. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Hornbaker, D. J. et al. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 295, 828–831 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Manassen, Y., Hamers, R. J., Demuth, J. E. & Castellano, A. J. Direct observation of the precession of individual parametric spins on oxidized silicon surfaces. Phys. Rev. Lett. 62, 2531–2534 (1989)

    Article  ADS  CAS  Google Scholar 

  11. Durkan, C. & Welland, C. E. Electronic spin detection in molecules using scanning-tunneling-microscopy-assisted electron spin resonance. Appl. Phys. Lett. 80, 458–460 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Mamin, H. J., Birk, H., Wimmer, P. & Rugar, D. High-speed scanning tunneling microscopy: Principles and applications. J. Appl. Phys. 75, 161–168 (1994)

    Article  ADS  CAS  Google Scholar 

  13. Rost, M. J. et al. Scanning probe microscopes go video rate and beyond. Rev. Sci. Instrum. 76, 053710 (2005)

    Article  ADS  Google Scholar 

  14. Nunes, G. & Freeman, M. R. Picosecond resolution in scanning tunneling microscopy. Science 262, 1029–1032 (1993)

    Article  ADS  CAS  Google Scholar 

  15. Weiss, S., Ogletree, D. F., Botkin, D., Salmeron, M. & Chemla, D. S. Ultrafast scanning probe microscopy. Appl. Phys. Lett. 63, 2567–2569 (1993)

    Article  ADS  CAS  Google Scholar 

  16. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Flowers-Jacobs, N. E., Schmidt, D. R. & Lehnert, K. W. Intrinsic noise properties of atomic point contact displacement detectors. Phys. Rev. Lett. 98, 096804 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Truitt, P. A., Hertzberg, J. B., Huang, C. C., Ekinci, K. L. & Schwab, K. C. Efficient and sensitive capacitive readout of nanomechanical resonator arrays. Nano Lett. 7, 120–126 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Kurokawa, S. & Sakai, A. Gap dependence of the tip-sample capacitance. J. Appl. Phys. 83, 7416–7423 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Hallmark, V. M., Chiang, S., Rabolt, J. F., Swalen, J. D. & Wilson, R. J. Observation of atomic corrugation on Au(111) by scanning tunneling microscopy. Phys. Rev. Lett. 59, 2879–2882 (1987)

    Article  ADS  CAS  Google Scholar 

  21. Birk, H., de Jong, J. M. & Schönenberger, C. Shot-noise suppression in the single-electron tunneling regime. Phys. Rev. Lett. 75, 1610–1613 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Spietz, L., Lehnert, K. W., Siddiqi, I. & Schoelkopf, R. J. Primary electronic thermometry using the shot noise of a tunnel junction. Science 300, 1929–1932 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Majumdar, A., Carrejo, J. P. & Lai, J. Thermal imaging using the atomic force microscope. Appl. Phys. Lett. 62, 2501–2503 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Binnig, G., Quate, C. F. & Gerber, Ch. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  ADS  CAS  Google Scholar 

  25. Yurke, B. & Kochanski, G. P. Momentum noise in vacuum tunneling transducers. Phys. Rev. B 41, 8184–8194 (1990)

    Article  ADS  CAS  Google Scholar 

  26. Presilla, C., Onofrio, R. & Bocko, M. F. Uncertainty-principle noise in vacuum-tunneling transducers. Phys. Rev. B 45, 3735–3743 (1992)

    Article  ADS  CAS  Google Scholar 

  27. Clerk, A. A. & Girvin, S. M. Shot noise of a tunnel junction displacement detector. Phys. Rev. B 70, 121303 (2004)

    Article  ADS  Google Scholar 

  28. Xu, Y., MacDonald, N. C. & Miller, S. A. Integrated micro-scanning tunneling microscope. Appl. Phys. Lett. 67, 2305–2307 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Jehl, X., Sanquer, M., Calemczuk, R. & Mailly, D. Detection of doubled shot noise in short normal-metal/ superconductor junctions. Nature 405, 50–53 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–197 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. M. Karabacak for help with optical interferometry and A. Vandelay for discussions. This work was supported by the National Science Foundation through the Division of Materials Research (IMR Programme), the Division of Civil, Mechanical and Manufacturing Innovation (MDSE Programme) and the Cornell Center for Materials Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Ekinci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figures S1-S2 with Legends, Supplementary Table S1 and additional references. Supplementary Figure S1 shows the effective temperature calculation. Supplementary Figure S2 shows SEM and STM images of the membranes used. Supplementary Table S1 lists the experimentally extracted tunnel junction decay constant. (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemiktarak, U., Ndukum, T., Schwab, K. et al. Radio-frequency scanning tunnelling microscopy. Nature 450, 85–88 (2007). https://doi.org/10.1038/nature06238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06238

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing