Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional architecture of the retromer cargo-recognition complex

Abstract

The retromer complex1,2 is required for the sorting of acid hydrolases to lysosomes3,4,5,6,7, transcytosis of the polymeric immunoglobulin receptor8, Wnt gradient formation9,10, iron transporter recycling11 and processing of the amyloid precursor protein12. Human retromer consists of two smaller complexes: the cargo recognition VPS26–VPS29–VPS35 heterotrimer and a membrane-targeting heterodimer or homodimer of SNX1 and/or SNX2 (ref. 13). Here we report the crystal structure of a VPS29–VPS35 subcomplex showing how the metallophosphoesterase-fold subunit VPS29 (refs 14, 15) acts as a scaffold for the carboxy-terminal half of VPS35. VPS35 forms a horseshoe-shaped, right-handed, α-helical solenoid, the concave face of which completely covers the metal-binding site of VPS29, whereas the convex face exposes a series of hydrophobic interhelical grooves. Electron microscopy shows that the intact VPS26–VPS29–VPS35 complex is a stick-shaped, flexible structure, approximately 21 nm long. A hybrid structural model derived from crystal structures, electron microscopy, interaction studies and bioinformatics shows that the α-solenoid fold extends the full length of VPS35, and that VPS26 is bound at the opposite end from VPS29. This extended structure presents multiple binding sites for the SNX complex and receptor cargo, and appears capable of flexing to conform to curved vesicular membranes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the VPS29–VPS35 subcomplex.
Figure 2: Assembly of the cargo-recognition complex.
Figure 3: Structural analysis of the complete cargo-recognition complex.
Figure 4: Integration of cargo and targeting signals by the cargo-recognition complex.

Similar content being viewed by others

References

  1. Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005)

    Article  CAS  Google Scholar 

  2. Bonifacino, J. S. & Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nature Rev. Mol. Cell Biol. 7, 568–579 (2006)

    Article  CAS  Google Scholar 

  3. Seaman, M. N. J., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998)

    Article  CAS  Google Scholar 

  4. Haft, C. R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: Assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000)

    Article  CAS  Google Scholar 

  5. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004)

    Article  CAS  Google Scholar 

  6. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004)

    Article  CAS  Google Scholar 

  7. Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004)

    Article  CAS  Google Scholar 

  8. Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biol. 6, 763–769 (2004)

    Article  CAS  Google Scholar 

  9. Coudreuse, D. Y. M., Roel, G., Betist, M. C., Destree, O. & Korswagen, H. C. Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Prasad, B. C. & Clark, S. G. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. . Development 133, 1757–1766 (2006)

    Article  CAS  Google Scholar 

  11. Strochlic, T. I., Setty, T. G., Sitaram, A. & Burd, C. G. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J. Cell Biol. 177, 115–125 (2007)

    Article  CAS  Google Scholar 

  12. Small, S. A. et al. Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann. Neurol. 58, 909–919 (2005)

    Article  CAS  Google Scholar 

  13. Rojas, R., Kametaka, S., Haft, C. R. & Bonifacino, J. S. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of the mannose 6-phosphate receptors. Mol. Cell. Biol. 27, 1112–1124 (2007)

    Article  CAS  Google Scholar 

  14. Wang, D. et al. Crystal structure of human vacuolar protein sorting protein 29 reveals a phosphodiesterase/nuclease-like fold and two protein-protein interaction sites. J. Biol. Chem. 280, 22962–22967 (2005)

    Article  CAS  Google Scholar 

  15. Collins, B. M., Skinner, C. F., Watson, P. J., Seaman, M. N. & Owen, D. J. Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nature Struct. Mol. Biol. 12, 594–602 (2005)

    Article  CAS  Google Scholar 

  16. Shi, H., Rojas, R., Bonifacino, J. S. & Hurley, J. H. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nature Struct. Mol. Biol. 13, 540–548 (2006)

    Article  CAS  Google Scholar 

  17. Damen, E., Krieger, E., Nielsen, J. E., Eygensteyn, J. & van Leeuwen, J. E. M. The human Vps29 retromer component is a metallo-phosphoesterase for a cation-independent mannose 6-phosphate receptor substrate peptide. Biochem. J. 398, 399–409 (2006)

    Article  CAS  Google Scholar 

  18. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002)

    Article  CAS  Google Scholar 

  19. Heldwein, E. E. et al. Crystal structure of the clathrin adaptor protein 1 core. Proc. Natl Acad. Sci. USA 101, 14108–14113 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Ybe, J. A. et al. Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature 399, 371–375 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1251–1252 (2007)

    Article  Google Scholar 

  23. Misra, S., Puertollano, R., Kato, Y., Bonifacino, J. S. & Hurley, J. H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933–937 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Shiba, T. et al. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415, 937–941 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Nothwehr, S. F., Bruinsma, P. & Strawn, L. A. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol. Biol. Cell 10, 875–890 (1999)

    Article  CAS  Google Scholar 

  26. Yang, J. et al. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J. 24, 1–10 (2005)

    Article  Google Scholar 

  27. Groves, M. R. & Barford, D. Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383–389 (1999)

    Article  CAS  Google Scholar 

  28. Conti, E. & Izaurralde, E. Nucleocytoplasmic transport enters the atomic age. Curr. Opin. Cell Biol. 13, 310–319 (2001)

    Article  CAS  Google Scholar 

  29. Nothwehr, S. F., Ha, S. A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151, 297–310 (2000)

    Article  CAS  Google Scholar 

  30. Peter, B. J. et al. BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science 303, 495–499 (2004)

    Article  ADS  CAS  Google Scholar 

  31. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 15, 34–39 (1999)

    Article  CAS  Google Scholar 

  32. Hierro, A., Kim, J. & Hurley, J. H. Polycistronic expression and purification of the ESCRT-II endosomal trafficking complex. Methods Enzymol. 403, 322–332 (2005)

    Article  CAS  Google Scholar 

  33. Tan, S. A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli . Protein Expr. Purif. 21, 224–234 (2001)

    Article  CAS  Google Scholar 

  34. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  36. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  37. Pettit, F. K., Bare, E., Tsai, A. & Bowie, J. U. HotPatch: a statistical approach to finding biologically relevant features on protein surfaces. J. Mol. Biol. 369, 863–879 (2007)

    Article  CAS  Google Scholar 

  38. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002)

    Article  CAS  Google Scholar 

  39. Martina, J. A., Moriyama, K. & Bonifacino, J. S. BLOC-3, a protein complex containing the Hermansky-Pudlak syndrome gene products HPS1 and HPS4. J. Biol. Chem. 278, 29376–29384 (2003)

    Article  CAS  Google Scholar 

  40. Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007)

    Article  CAS  Google Scholar 

  41. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  CAS  Google Scholar 

  42. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    Article  CAS  Google Scholar 

  43. Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. A flexible motif search technique based on generalized profiles. Comput. Chem. 20, 3–23 (1996)

    Article  CAS  Google Scholar 

  44. Hofmann, K. & Bucher, P. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem. Sci. 20, 347–349 (1995)

    Article  CAS  Google Scholar 

  45. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Shi for contributing to the early stages of this project; X. Zhu and H. T. Tsai for technical assistance; B. Canagarajah for bioinformatics and computational crystallography support; E. Tyler for artwork; Z.-Q. Fu and all the staff of APS SER-CAT beamline 22 for assistance with data collection; and C. Haft for antibodies to retromer. Use of the APS was supported by the US DOE, Basic Energy Sciences, Office of Science. This project was funded by the Intramural Programs of NIDDK, NICHD and NIAMS, NIH.

Author Contributions A.L.R. and A.H. expressed and purified protein complexes, crystallized the VPS29–VPS35 C-terminal subcomplex, collected crystallographic data, and determined and refined the crystal structure; A.H. carried out phosphatase assays; R.R. and N.M. carried out immunoprecipitation and optical microscopy studies; G.E. and A.C.S. carried out and interpreted electron microscopy studies; A.V.K. carried out sequence analysis; and J.H.H., J.S.B. and A.C.S. designed the study. A.H. and A.L.R. contributed equally to this study.

Crystallographic coordinates have been deposited with the Protein Data Bank with accession number 2R17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Hurley.

Ethics declarations

Competing interests

Crystallographic coordinates have been deposited with the Protein Data Bank with accession number 2R17. Reprints and permissions information is available at www.nature.com/reprints.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S8 with Legends and Supplementary Tables S1-S2. (PDF 5515 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hierro, A., Rojas, A., Rojas, R. et al. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067 (2007). https://doi.org/10.1038/nature06216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06216

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing