Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Manipulation of host-cell pathways by bacterial pathogens

Abstract

Bacterial pathogens operate by attacking crucial intracellular pathways in their hosts. These pathogens usually target more than one intracellular pathway and often interact at several points in each of these pathways to commandeer them fully. Although different bacterial pathogens tend to exploit similar pathway components in the host, the way in which they 'hijack' host cells usually differs. Knowledge of how pathogens target distinct cytoskeletal components and immune-cell signalling pathways is rapidly advancing, together with the understanding of bacterial virulence at a molecular level. Studying how these bacterial pathogens subvert host-cell pathways is central to understanding infectious disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cell biology of bacterial infections.
Figure 2: Generation of pedestals by EPEC and EHEC.
Figure 3: Subversion of NF-κB-mediated signalling.
Figure 4: Prevention of antigen presentation by APCs.

Similar content being viewed by others

References

  1. Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    Article  ADS  CAS  Google Scholar 

  2. Pizarro-Cerda, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell 124, 715–727 (2006).

    Article  CAS  Google Scholar 

  3. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  ADS  CAS  Google Scholar 

  4. Stevens, J. M., Galyov, E. E. & Stevens, M. P. Actin-dependent movement of bacterial pathogens. Nature Rev. Microbiol. 4, 91–101 (2006).

    Article  CAS  Google Scholar 

  5. Finlay, B. B. Bacterial virulence strategies that utilize Rho GTPases. Curr. Top. Microbiol. Immunol. 291, 1–10 (2005).

    CAS  PubMed  Google Scholar 

  6. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, E183–E188 (1999).

    Article  CAS  Google Scholar 

  7. Gao, L. & Abu Kwaik, Y. Hijacking of apoptotic pathways by bacterial pathogens. Microbes Infect. 2, 1705–1719 (2000).

    Article  CAS  Google Scholar 

  8. Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782 (2006).

    Article  CAS  Google Scholar 

  9. Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).

    Article  CAS  Google Scholar 

  10. Stender, S. et al. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36, 1206–1221 (2000).

    Article  CAS  Google Scholar 

  11. Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B. & Galan, J. E. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248–259 (2001).

    Article  CAS  Google Scholar 

  12. Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006).

    Article  CAS  Google Scholar 

  13. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  Google Scholar 

  14. Chakraborty, T. et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J. 14, 1314–1321 (1995).

    Article  CAS  Google Scholar 

  15. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes . Nature 385, 265–269 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Grunheld, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol. 3, 856–859 (2001).

    Article  Google Scholar 

  17. Campellone, K. G., Robbins, D. & Leong, J. M. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7, 217–228 (2004).

    Article  CAS  Google Scholar 

  18. Garmendia, J. et al. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell. Microbiol. 6, 1167–1183 (2004).

    Article  CAS  Google Scholar 

  19. Shaner, N. C., Sanger, J. W. & Sanger, J. M. Actin and α-actinin dynamics in the adhesion and motility of EPEC and EHEC on host cells. Cell Motil. Cytoskeleton 60, 104–120 (2005).

    Article  CAS  Google Scholar 

  20. Cantarelli, V. V. et al. Cortactin is necessary for F-actin accumulation in pedestal structures induced by enteropathogenic Escherichia coli infection. Infect. Immun. 70, 2206–2209 (2002).

    Article  CAS  Google Scholar 

  21. Goosney, D. L., DeVinney, R. & Finlay, B. B. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69, 3315–3322 (2001).

    Article  CAS  Google Scholar 

  22. Goosney, D. L. et al. Enteropathogenic E. coli translocated intimin receptor, Tir, interacts directly with α-actinin. Curr. Biol. 10, 735–738 (2000).

    Article  CAS  Google Scholar 

  23. Unsworth, K. E. et al. Dynamin is required for F-actin assembly and pedestal formation by enteropathogenic Escherichia coli (EPEC). Cell. Microbiol. 9, 438–449 (2007).

    Article  CAS  Google Scholar 

  24. Batchelor, M. et al. Involvement of the intermediate filament protein cytokeratin-18 in actin pedestal formation during EPEC infection. EMBO Rep. 5, 104–110 (2004).

    Article  CAS  Google Scholar 

  25. Hanajima-Ozawa, M. et al. Enteropathogenic Escherichia coli, Shigella flexneri, and Listeria monocytogenes recruit a junctional protein, zonula occludens-1, to actin tails and pedestals. Infect. Immun. 75, 565–573 (2007).

    Article  CAS  Google Scholar 

  26. Yoshida, S. et al. Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 21, 2923–2935 (2002).

    Article  CAS  Google Scholar 

  27. Hardwidge, P. R. et al. Modulation of host cytoskeleton function by the enteropathogenic Escherichia coli and Citrobacter rodentium effector protein EspG. Infect. Immun. 73, 2586–2594 (2005).

    Article  CAS  Google Scholar 

  28. Hu, L. & Kopecko, D. J. Campylobacter jejuni 81-176 associates with microtubules and dynein during invasion of human intestinal cells. Infect. Immun. 67, 4171–4182 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Roy, C. R. & Tilney, L. G. The road less traveled: transport of Legionella to the endoplasmic reticulum. J. Cell Biol. 158, 415–419 (2002).

    Article  CAS  Google Scholar 

  30. Knodler, L. A. & Steele-Mortimer, O. Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4, 587–599 (2003).

    Article  CAS  Google Scholar 

  31. Nagai, H. et al. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc. Natl Acad. Sci. USA 102, 826–831 (2005).

    Article  ADS  CAS  Google Scholar 

  32. Robinson, C. G. & Roy, C. R. Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila . Cell. Microbiol. 8, 793–805 (2006).

    Article  CAS  Google Scholar 

  33. Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nature Cell Biol. 8, 971–977 (2006).

    Article  CAS  Google Scholar 

  34. Steele-Mortimer, O., Meresse, S., Gorvel, J. P., Toh, B. H. & Finlay, B. B. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1, 33–49 (1999).

    Article  CAS  Google Scholar 

  35. Cuellar-Mata, P. et al. Nramp1 modifies the fusion of Salmonella typhimurium-containing vacuoles with cellular endomembranes in macrophages. J. Biol. Chem. 277, 2258–2265 (2002).

    Article  CAS  Google Scholar 

  36. Drecktrah, D., Knodler, L. A., Howe, D. & Steele-Mortimer, O. Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system. Traffic 8, 212–225 (2007).

    Article  CAS  Google Scholar 

  37. Sansonetti, P. J., Ryter, A., Clerc, P., Maurelli, A. T. & Mounier, J. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect. Immun. 51, 461–469 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Veiga, E. & Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biol. 7, 894–900 (2005).

    Article  CAS  Google Scholar 

  39. Shaughnessy, L. M., Hoppe, A. D., Christensen, K. A. & Swanson, J. A. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell. Microbiol. 8, 781–792 (2006).

    Article  CAS  Google Scholar 

  40. Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella . Nature Cell Biol. 4, 766–773 (2002).

    Article  CAS  Google Scholar 

  41. Prehna, G., Ivanov, M. I., Bliska, J. B. & Stebbins, C. E. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell 126, 869–880 (2006).

    Article  CAS  Google Scholar 

  42. McDonald, C., Vacratsis, P. O., Bliska, J. B. & Dixon, J. E. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem. 278, 18514–18523 (2003).

    Article  CAS  Google Scholar 

  43. Hayden, M. S., West, A. P. & Ghosh, S. NF-κB and the immune response. Oncogene 25, 6758–6780 (2006).

    Article  CAS  Google Scholar 

  44. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  Google Scholar 

  45. Perkins, N. D. Post-translational modifications regulating the activity and function of the nuclear factor κB pathway. Oncogene 25, 6717–6730 (2006).

    Article  CAS  Google Scholar 

  46. Angot, A., Vergunst, A., Genin, S. & Peeters, N. Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog. 3, e3 (2007).

    Article  Google Scholar 

  47. Kim, D. W. et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl Acad. Sci. USA 102, 14046–14051 (2005).

    Article  ADS  CAS  Google Scholar 

  48. Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nature Immunol. 8, 47–56 (2007).

    Article  CAS  Google Scholar 

  49. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  50. Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 22, 2788–2797 (2003).

    Article  CAS  Google Scholar 

  51. Cheminay, C., Mohlenbrink, A. & Hensel, M. Intracellular Salmonella inhibit antigen presentation by dendritic cells. J. Immunol. 174, 2892–2899 (2005).

    Article  CAS  Google Scholar 

  52. Ashwell, J. D. The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nature Rev. Immunol. 6, 532–540 (2006).

    Article  CAS  Google Scholar 

  53. Autenrieth, S. E. et al. Yersinia enterocolitica YopP inhibits MAP kinase-mediated antigen uptake in dendritic cells. Cell. Microbiol. 9, 425–437 (2007).

    Article  CAS  Google Scholar 

  54. Scott, A. M. & Saleh, M. The inflammatory caspases: guardians against infections and sepsis. Cell Death Differ. 14, 23–31 (2007).

    Article  CAS  Google Scholar 

  55. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin-1β via Ipaf. Nature Immunol. 7, 569–575 (2006).

    Article  CAS  Google Scholar 

  56. DeLeo, F. R. Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9, 399–413 (2004).

    Article  ADS  CAS  Google Scholar 

  57. Wickham, M. E., Brown, N. F., Boyle, E. C., Coombes, B. K. & Finlay, B. B. Virulence is positively selected by transmission success between mammalian hosts. Curr. Biol. 17, 783–788 (2007).

    Article  CAS  Google Scholar 

  58. Navarre, W. W. et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella . Science 313, 236–238 (2006).

    Article  ADS  CAS  Google Scholar 

  59. Stavrinides, J., Ma, W. & Guttman, D. S. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog. 2, e104 (2006).

    Article  Google Scholar 

  60. Tobe, T. et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl Acad. Sci. USA 103, 14941–14946 (2006).

    Article  ADS  CAS  Google Scholar 

  61. Labandeira-Rey, M. et al. Staphylococcus aureus Panton–Valentine leukocidin causes necrotizing pneumonia. Science 315, 1130–1133 (2007).

    Article  ADS  CAS  Google Scholar 

  62. Wollert, T. et al. Extending the host range of Listeria monocytogenes by rational protein design. Cell 129, 891–902 (2007).

    Article  CAS  Google Scholar 

  63. Lecuit, M. et al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725 (2001).

    Article  ADS  CAS  Google Scholar 

  64. Casanova, J. L. & Abel, L. Human genetics of infectious diseases: a unified theory. EMBO J. 26, 915–922 (2007).

    Article  CAS  Google Scholar 

  65. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  Google Scholar 

  66. Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007).

    Article  CAS  Google Scholar 

  67. Rytkonen, A. et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl Acad. Sci. USA 104, 3502–3507 (2007).

    Article  ADS  Google Scholar 

  68. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  ADS  CAS  Google Scholar 

  69. Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science 315, 1000–1003 (2007).

    Article  ADS  CAS  Google Scholar 

  70. Toyotome, T. et al. Shigella protein IpaH9.8 is secreted from bacteria within mammalian cells and transported to the nucleus. J. Biol. Chem. 276, 32071–32079 (2001).

    Article  CAS  Google Scholar 

  71. Okuda, J. et al. Shigella effector IpaH9.8 binds to a splicing factor U2AF[35] to modulate host immune responses. Biochem. Biophys. Res. Commun. 333, 531–539 (2005).

    Article  CAS  Google Scholar 

  72. Haraga, A. & Miller, S. I. A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression. Infect. Immun. 71, 4052–4058 (2003).

    Article  CAS  Google Scholar 

  73. Haraga, A. & Miller, S. I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol. 8, 837–846 (2006).

    Article  CAS  Google Scholar 

  74. Benabdillah, R., Mota, L. J., Lutzelschwab, S., Demoinet, E. & Cornelis, G. R. Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb. Pathog. 36, 247–261 (2004).

    Article  CAS  Google Scholar 

  75. Schornack, S., Meyer, A., Romer, P., Jordan, T. & Lahaye, T. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J. Plant Physiol. 163, 256–272 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of B.B.F.'s laboratory for helpful discussions and critical reading of the manuscript. We gratefully acknowledge F. Ness for assistance with the preparation of figures. We apologize to authors whose work could not be cited as a result of space restrictions. Work in B.B.F.'s laboratory is supported by grants from the Canadian Institutes of Health Research (CIHR), the Howard Hughes Medical Institute (HHMI), the Foundation for the National Institutes of Health, and Genome Canada. A.P.B. is supported by fellowships from the CIHR and the Michael Smith Foundation for Health Research (MSFHR). J.A.G. is supported by a Canadian Association for Gastroenterology/CIHR/AstraZeneca fellowship and a fellowship from the MSFHR. B.B.F. is a CIHR Distinguished Investigator, an HHMI International Research Scholar, and the Peter Wall Distinguished Professor, at the University of British Columbia.

Author information

Authors and Affiliations

Authors

Additional information

Reprints and permissions information is available at http://npg.nature.com/reprints.

Correspondence should be addressed to B.B.F. (bfinlay@interchange.ubc.ca).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhavsar, A., Guttman, J. & Finlay, B. Manipulation of host-cell pathways by bacterial pathogens. Nature 449, 827–834 (2007). https://doi.org/10.1038/nature06247

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06247

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing