Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A giant planet orbiting the ‘extreme horizontal branch’ star V 391 Pegasi

Abstract

After the initial discoveries fifteen years ago1,2, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found3. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate4,5. Here we report the discovery of a planetary-mass body (Msini = 3.2MJupiter) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung–Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The O–C diagram of the main pulsation frequencyf1 of V 391 Peg.
Figure 2: The O–C diagram of f1.
Figure 3: The O–C diagram of f2.

Similar content being viewed by others

References

  1. Wolszczan, A. & Frail, D. A. A planetary system around the millisecond pulsar PSR1257+12. Nature 355, 145–147 (1992)

    Article  ADS  Google Scholar 

  2. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995)

    Article  ADS  Google Scholar 

  3. Döllinger, M. P. et al. Discovery of a planet around the K giant star 4 U Ma. Astron. Astrophys. (in the press); preprint at 〈http://arxiv.org/astro-ph/0703672

  4. Rasio, F. A., Tout, C. A., Lubow, S. H. & Livio, M. Tidal decay of close planetary orbits. Astrophys. J. 470, 1187–1191 (1996)

    Article  ADS  Google Scholar 

  5. Rybicki, K. R. & Denis, C. On the final destiny of the Earth and the Solar System. Icarus 151, 130–137 (2001)

    Article  ADS  Google Scholar 

  6. Østensen, R. et al. Detection of pulsations in three subdwarf B stars. Astron. Astrophys. 368, 175–182 (2001)

    Article  ADS  Google Scholar 

  7. Kilkenny, D. Pulsating hot subdwarfs—an observational review. Commun. Asteroseismol. 150, 234–240 (2007)

    Article  ADS  Google Scholar 

  8. Silvotti, R. et al. The temporal spectrum of the sdB pulsating star HS 2201+2610 at 2 ms resolution. Astron. Astrophys. 389, 180–190 (2002)

    Article  ADS  Google Scholar 

  9. Kepler, S. O. et al. Measuring the evolution of the most stable optical clock G 117–B15A. Astrophys. J. 634, 1311–1318 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Reed, M. et al. Observations of the pulsating subdwarf B star Feige 48: constraints on evolution and companions. Mon. Not. R. Astron. Soc. 348, 1164–1174 (2004)

    Article  ADS  Google Scholar 

  11. Winget, D. E. et al. The search for planets around pulsating white dwarf stars. ASP Conf. Ser. 294, 59–64 (2003)

    ADS  Google Scholar 

  12. Sterken, C. The O–C diagram: basic procedures. ASP Conf. Ser. 335, 3–23 (2005)

    ADS  Google Scholar 

  13. Thorsett, S. E., Arzoumanian, Z. & Taylor, J. H. PSR B1620–26—A binary radio pulsar with a planetary companion? Astrophys. J. 412, L33–L36 (1993)

    Article  ADS  Google Scholar 

  14. Costa, J. E. S., Kepler, S. O. & Winget, D. E. Direct measurement of a secular pulsation period change in the pulsating hot pre-white dwarf PG 1159–035. Astrophys. J. 522, 973–982 (1999)

    Article  ADS  Google Scholar 

  15. Mukadam, A. S. et al. Constraining the evolution of ZZ Ceti. Astrophys. J. 594, 961–970 (2003)

    Article  ADS  Google Scholar 

  16. Koen, C. Statistics of O–C diagrams and period changes. ASP Conf. Ser. 335, 25–35 (2005)

    ADS  Google Scholar 

  17. Hanel, R., Conrath, B., Herath, L., Kunde, V. & Pirraglia, J. Albedo, internal heat, and energy balance of Jupiter—preliminary results of the Voyager infrared investigation. J. Geophys. Res. 86, 8705–8712 (1981)

    Article  ADS  Google Scholar 

  18. Maxted, P. F. L., Napiwotzki, R., Dobbie, P. D. & Burleigh, M. R. Survival of a brown dwarf after engulfment by a red giant star. Nature 442, 543–545 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Villaver, E. & Livio, M. Can planets survive stellar evolution? Astrophys. J. 661, 1192–1201 (2007)

    Article  ADS  Google Scholar 

  20. Duncan, M. J. & Lissauer, J. J. The effects of post-main-sequence solar mass loss on the stability of our planetary system. Icarus 134, 303–310 (1998)

    Article  ADS  Google Scholar 

  21. Livio, M. & Soker, N. Star-planet systems as progenitors of cataclysmic binaries: tidal effects. Astron. Astrophys. 125, L12–L15 (1983)

    ADS  Google Scholar 

  22. Sweigart, A. V. & Gross, P. G. Evolutionary sequences for red giant stars. Astrophys. J. 36 (Suppl.). 405–437 (1978)

    Article  CAS  Google Scholar 

  23. Han, Z., Podsiadlowski, Maxted, P. F. L., Marsh, T. R. & Ivanova, N. The origin of subdwarf B stars—I. The formation channels. Mon. Not. R. Astron. Soc. 336, 449–466 (2002)

    Article  ADS  Google Scholar 

  24. Zahn, J. P. Tidal friction in close binary stars. Astron. Astrophys. 57, 383–394 (1977)

    ADS  Google Scholar 

  25. Eggleton, P. P. Approximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983)

    Article  ADS  Google Scholar 

  26. Soker, N. Can planets influence the horizontal branch morphology? Astron. J. 116, 1308–1313 (1998)

    Article  ADS  Google Scholar 

  27. Silvotti, R. et al. The rapidly pulsating subdwarf B star PG 1325+101. I. Oscillation modes from multisite observations. Astron. Astrophys. 459, 557–564 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Stumpff, P. Two self-consistent FORTRAN subroutines for the computation of the Earth's motion. Astron. Astrophys. Suppl. Ser. 41, 1–8 (1980)

    ADS  Google Scholar 

  29. Charpinet, S., Fontaine, G., Brassard, P. & Dorman, B. Adiabatic survey of subdwarf B star oscillations. III. Effects of extreme horizontal branch stellar evolution on pulsation modes. Astrophys. J. 140 (Suppl.). 469–561 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

R.S. thanks M. Capaccioli, J. M. Alcalá, E. Covino and S. O. Kepler for discussions and suggestions, S. Marinoni and S. Galleti for their contribution to the observations, and the MiUR for financial support. S.S. thanks T. Nagel, E. Goehler, T. Stahn, S. D. Huegelmeyer, R. Lutz, U. Thiele and A. Guijarro for their help in data acquisition, and the DFG for travel grants. R.Ø. is supported by the Research Council of the University of Leuven and by the FP6 Coordination Action HELAS of the EU. T.D.O. acknowledges support from the US National Science Foundation. P.M. acknowledges support from the Polish MNiSW.

Author Contributions R.S. analysed and interpreted the data from which the presence of the planet was inferred. R.S., S.S., R.J., J.-E.S., S.B., R.Ø., T.D.O., I.B., R.G., A. Bonanno., G.V., M.R., C.-W.C., E.L. and M.P. contributed to the large amount of observations and/or data reduction. A. Baran., S.C., N.D., S.K., D.K., P.M., R.R. and S.Z. contributed to the organization and/or on-line data reduction/analysis during the XCov23 Whole Earth Telescope campaign of August-September 2003, in which V 391 Peg was observed as a secondary target. S.K. performed some tests on theoretical . S.K. and S.Z. did independent checks of the O–C fits. E.L. made statistical tests on the significance level of the O–C fits. All authors discussed and interpreted the results and commented on the manuscript. D.K. and R.Ø. in particular helped to improve the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Silvotti.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Notes, Supplementary Tables 1-2 and additional references. (PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvotti, R., Schuh, S., Janulis, R. et al. A giant planet orbiting the ‘extreme horizontal branch’ star V 391 Pegasi. Nature 449, 189–191 (2007). https://doi.org/10.1038/nature06143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06143

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing