Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Temporal precision in the neural code and the timescales of natural vision

Abstract

The timing of action potentials relative to sensory stimuli can be precise down to milliseconds in the visual system1,2,3,4,5,6,7, even though the relevant timescales of natural vision are much slower. The existence of such precision contributes to a fundamental debate over the basis of the neural code and, specifically, what timescales are important for neural computation8,9,10. Using recordings in the lateral geniculate nucleus, here we demonstrate that the relevant timescale of neuronal spike trains depends on the frequency content of the visual stimulus, and that ‘relative’, not absolute, precision is maintained both during spatially uniform white-noise visual stimuli and naturalistic movies. Using information-theoretic techniques, we demonstrate a clear role of relative precision, and show that the experimentally observed temporal structure in the neuronal response is necessary to represent accurately the more slowly changing visual world. By establishing a functional role of precision, we link visual neuron function on slow timescales to temporal structure in the response at faster timescales, and uncover a straightforward purpose of fine-timescale features of neuronal spike trains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The timescale of the neuronal response depends on the nature of the visual stimulus, defining relative precision.
Figure 2: Precision is necessary to convey information about visual stimuli.
Figure 3: Precision is necessary to represent relevant stimulus frequencies.

References

  1. Bair, W. & Koch, C. Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput. 8, 1185–1202 (1996)

    Article  CAS  Google Scholar 

  2. Berry, M. J. & Meister, M. Refractoriness and neural precision. J. Neurosci. 18, 2200–2211 (1998)

    Article  CAS  Google Scholar 

  3. Buracas, G. T., Zador, A. M., DeWeese, M. R. & Albright, T. D. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20, 959–969 (1998)

    Article  CAS  Google Scholar 

  4. Lewen, G. D., Bialek, W. & de Ruyter van Steveninck, R. R. Neural coding of naturalistic motion stimuli. Network 12, 317–329 (2001)

    Article  CAS  Google Scholar 

  5. Liu, R. C., Tzonev, S., Rebrik, S. & Miller, K. D. Variability and information in a neural code of the cat lateral geniculate nucleus. J. Neurophysiol. 86, 2789–2806 (2001)

    Article  CAS  Google Scholar 

  6. Reinagel, P. & Reid, R. C. Temporal coding of visual information in the thalamus. J. Neurosci. 20, 5392–5400 (2000)

    Article  CAS  Google Scholar 

  7. Uzzell, V. J. & Chichilnisky, E. J. Precision of spike trains in primate retinal ganglion cells. J. Neurophysiol. 92, 780–789 (2004)

    Article  CAS  Google Scholar 

  8. Borst, A. & Theunissen, F. E. Information theory and neural coding. Nature Neurosci. 2, 947–957 (1999)

    Article  CAS  Google Scholar 

  9. de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle, R. & Bialek, W. Reproducibility and variability in neural spike trains. Science 275, 1805–1808 (1997)

    Article  CAS  Google Scholar 

  10. Mainen, Z. F. & Sejnowski, T. J. Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Gabbiani, F., Metzner, W., Wessel, R. & Koch, C. From stimulus encoding to feature extraction in weakly electric fish. Nature 384, 564–567 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Boloori, A. R. & Stanley, G. B. The dynamics of spatiotemporal response integration in the somatosensory cortex of the vibrissa system. J. Neurosci. 26, 3767–3782 (2006)

    Article  CAS  Google Scholar 

  13. Phillips, J. R., Johnson, K. O. & Hsiao, S. S. Spatial pattern representation and transformation in monkey somatosensory cortex. Proc. Natl Acad. Sci. USA 85, 1317–1321 (1988)

    Article  ADS  CAS  Google Scholar 

  14. Wehr, M. & Zador, A. M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Theunissen, F. & Miller, J. P. Temporal encoding in nervous systems: a rigorous definition. J. Comput. Neurosci. 2, 149–162 (1995)

    Article  CAS  Google Scholar 

  16. Kayser, C., Salazar, R. F. & Konig, P. Responses to natural scenes in cat V1. J. Neurophysiol. 90, 1910–1920 (2003)

    Article  Google Scholar 

  17. Keat, J., Reinagel, P., Reid, R. C. & Meister, M. Predicting every spike: a model for the responses of visual neurons. Neuron 30, 803–817 (2001)

    Article  CAS  Google Scholar 

  18. Brenner, N., Strong, S. P., Koberle, R., Bialek, W. & de Ruyter van Steveninck, R. R. Synergy in a neural code. Neural Comput. 12, 1531–1552 (2000)

    Article  CAS  Google Scholar 

  19. Pola, G., Thiele, A., Hoffmann, K. P. & Panzeri, S. An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network 14, 35–60 (2003)

    Article  CAS  Google Scholar 

  20. de Ruyter van Steveninck, R. & Laughlin, S. B. The rate of information transfer at graded-potential synapses. Nature 379, 642–645 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. Reading a neural code. Science 252, 1854–1857 (1991)

    Article  ADS  CAS  Google Scholar 

  22. Dan, Y., Alonso, J. M., Usrey, W. M. & Reid, R. C. Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus. Nature Neurosci. 1, 501–507 (1998)

    Article  CAS  Google Scholar 

  23. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Fu, Y. X. et al. Temporal specificity in the cortical plasticity of visual space representation. Science 296, 1999–2003 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Narayan, R., Grana, G. & Sen, K. Distinct time scales in cortical discrimination of natural sounds in songbirds. J. Neurophysiol. 96, 252–258 (2006)

    Article  Google Scholar 

  26. Chichilnisky, E. J. & Kalmar, R. S. Temporal resolution of ensemble visual motion signals in primate retina. J. Neurosci. 23, 6681–6689 (2003)

    Article  CAS  Google Scholar 

  27. Womelsdorf, T., Fries, P., Mitra, P. P. & Desimone, R. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439, 733–736 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Ahissar, E. & Arieli, A. Figuring space by time. Neuron 32, 185–201 (2001)

    Article  CAS  Google Scholar 

  29. VanRullen, R., Guyonneau, R. & Thorpe, S. J. Spike times make sense. Trends Neurosci. 28, 1–4 (2005)

    Article  CAS  Google Scholar 

  30. Lazar, A. A. Perfect recovery and sensitivity analysis of time encoded bandlimited signals. IEEE Trans. Circ. Syst. 51, 2060–2073 (2004)

    Article  MathSciNet  Google Scholar 

  31. Weng, C., Yeh, C. I., Stoelzel, C. R. & Alonso, J. M. Receptive field size and response latency are correlated within the cat visual thalamus. J. Neurophysiol. 93, 3537–3547 (2005)

    Article  Google Scholar 

  32. Lesica, N. A. et al. Dynamic encoding of natural luminance sequences by LGN bursts. PLoS Biol. 4, e209 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Charles King Trust Postdoctoral Fellowship (Bank of America, Co-Trustee, Boston; D.A.B), by the NGIA (D.A.B., N.A.L., G.B.S.), by the NIH and by the SUNY Research Foundation (C.W., J.J., C.-I.Y., J.-M.A.). We thank M. Goldman, M. Meister, G. Desbordes and A. Boloori for comments on the manuscript, C. Kayser for providing the natural-scene movies, and P. Wolfe for discussions regarding sampling issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Butts.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Discussion with Supplementary Figures. The Supplementary Methods describe the calculation of receptive fields and temporal scales. The Supplementary Figures and Discussion address the following: changes in temporal scale with stimulus class; temporal precision in phenomenological models; the relationship between jitter and frequency content and controlling for the effects of phase-locking. (PDF 1295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butts, D., Weng, C., Jin, J. et al. Temporal precision in the neural code and the timescales of natural vision. Nature 449, 92–95 (2007). https://doi.org/10.1038/nature06105

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06105

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing