Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low beta diversity of herbivorous insects in tropical forests

Abstract

Recent advances in understanding insect communities in tropical forests1,2 have contributed little to our knowledge of large-scale patterns of insect diversity, because incomplete taxonomic knowledge of many tropical species hinders the mapping of their distribution records3. This impedes an understanding of global biodiversity patterns and explains why tropical insects are under-represented in conservation biology. Our study of approximately 500 species from three herbivorous guilds feeding on foliage (caterpillars, Lepidoptera), wood (ambrosia beetles, Coleoptera) and fruit (fruitflies, Diptera) found a low rate of change in species composition (beta diversity) across 75,000 square kilometres of contiguous lowland rainforest in Papua New Guinea, as most species were widely distributed. For caterpillars feeding on large plant genera, most species fed on multiple host species, so that even locally restricted plant species did not support endemic herbivores. Large plant genera represented a continuously distributed resource easily colonized by moths and butterflies over hundreds of kilometres. Low beta diversity was also documented in groups with differing host specificity (fruitflies and ambrosia beetles), suggesting that dispersal limitation does not have a substantial role in shaping the distribution of insect species in New Guinea lowland rainforests. Similar patterns of low beta diversity can be expected in other tropical lowland rainforests, as they are typically situated in the extensive low basins of major tropical rivers similar to the Sepik–Ramu region of New Guinea studied here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study sites and field techniques of insect rearing.
Figure 2: Similarity of plant, caterpillar, ambrosia beetle and fruitfly assemblages as a function of geographical distance.
Figure 3: Overlap in species composition between the Madang regional species pool and insect assemblages at each of the study sites as a function of their distance from Madang.
Figure 4: Geographical distribution of caterpillar (a), ambrosia beetle (b) and fruitfly (c) species in Papua New Guinea lowland rainforests.

Similar content being viewed by others

References

  1. Novotny, V. & Basset, Y. Host specificity of insect herbivores in tropical forests. Proc. R. Soc. B 272, 1083–1090 (2005)

    Article  Google Scholar 

  2. Lewinsohn, T. M., Novotny, V. & Basset, Y. Insects on plants: diversity of herbivore assemblages revisited. Annu. Rev. Ecol. Evol. Syst. 36, 597–620 (2005)

    Article  Google Scholar 

  3. Novotny, V. & Weiblen, G. D. From communities to continents: beta-diversity of herbivorous insects. Annal. Zool. Fenn. 42, 463–475 (2005)

    Google Scholar 

  4. Novotny, V., Clarke, A. R., Drew, R. A. I., Balagawi, S. & Clifford, B. Host specialization and species richness of fruit flies (Diptera: Tephritidae) in a New Guinea rain forest. J. Trop. Ecol. 21, 67–77 (2005)

    Article  Google Scholar 

  5. Gaston, K. J. & Gauld, I. D. How many species of pimplines (Hymenoptera: Ichneumonidae) are there in Costa Rica? J. Trop. Ecol. 9, 491–499 (1993)

    Article  Google Scholar 

  6. Orr, A. G. & Haeuser, C. L. Temporal and spatial patterns of butterfly diversity in a lowland tropical rainforest. In Tropical Rainforest Research — Current Issues (eds Edwards, D. S., Booth W. E. & Choy, S.) 125–138 (Kluwer, Dordrecht, 1996)

    Chapter  Google Scholar 

  7. Erwin, T. L. The biodiversity question: How many species of terrestrial arthropods are there? In Forest Canopies 2nd edn (eds Lowman, M. D. & Rinker, H. B.) 259–269 (Elsevier, Burlington, 2004)

    Chapter  Google Scholar 

  8. Ruokolainen, K., Tuomisto, H., Vormisto, J. & Pitman, N. Two biases in estimating range sizes of Amazonian plant species. J. Trop. Ecol. 18, 935–942 (2002)

    Article  Google Scholar 

  9. Ødegaard, F. Host specificity, alpha- and beta-diversity of phytophagous beetles in two tropical forests in Panama. Biodivers. Conserv. 15, 83–105 (2006)

    Article  Google Scholar 

  10. Beck, J. & Chey, V. K. Beta-diversity of geometrid moths from northern Borneo: effects of habitat, time and space. J. Anim. Ecol. 76, 230–237 (2007)

    Article  Google Scholar 

  11. Brown, K. S. Geologic, evolutionary, and ecological bases of the diversification of Neotropical butterflies. In Tropical Rainforests. Past, Present, and Future (eds Bermingham, E., Dick, C. W. & Moritz, C.) 166–201 (Univ. Chicago Press, Chicago, 2005)

    Google Scholar 

  12. Howard, P. C. et al. Complementarity and the use of indicator groups for reserve selection in Uganda. Nature 394, 472–474 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Miller, S. E., Novotny, V. & Basset, Y. Studies on New Guinea moths. 1. Introduction (Lepidoptera). Proc. Entomol. Soc. Wash. 105, 1035–1043 (2003)

    Google Scholar 

  14. Novotny, V. et al. Local species richness of leaf-chewing insects feeding on woody plants from one hectare of a lowland rainforest. Cons. Biol. 18, 227–237 (2004)

    Article  Google Scholar 

  15. Condit, R. et al. Beta-diversity in tropical forest trees. Science 295, 666–669 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, Princeton, New Jersey, 2001)

    Google Scholar 

  17. Gascon, C. et al. Riverine barriers and the geographic distribution of Amazonian species. Proc. Natl Acad. Sci. USA 97, 13672–13677 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Hall, J. P. W. & Harvey, D. J. The phylogeography of Amazonia revisited: New evidence from riodinid butterflies. Evolution 56, 1489–1497 (2002)

    Article  Google Scholar 

  19. Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, Cambridge, 1995)

    Book  Google Scholar 

  20. Koleff, P., Lennon, J. J. & Gaston, K. J. Are there latitudinal gradients in species turnover? Glob. Ecol. Biogeogr. 12, 483–498 (2003)

    Article  Google Scholar 

  21. Höft, R. Plants of New Guinea and the Solomon Islands. Dictionary of the Genera and Families of Flowering Plants and Ferns, Handbook no. 13. (Wau Ecology Institute, Wau, 1992)

    Google Scholar 

  22. Novotny, V. et al. Response to comment on “Why are there so many species of herbivorous insects in tropical rainforests?”. Science 315, 1666 (2007)

    Article  CAS  Google Scholar 

  23. Ødegaard, F. How many species of arthropods? Erwin’s estimate revised. Biol. J. Linn. Soc. 71, 583–597 (2000)

    Article  Google Scholar 

  24. Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Stork, N. E. How many species are there? Biodiv.. Cons. 2, 215–232 (1993)

    Google Scholar 

  26. Novotny, V. et al. An altitudinal comparison of caterpillar (Lepidoptera) assemblages on Ficus trees in Papua New Guinea. J. Biogeogr. 32, 1303–1314 (2005)

    Article  Google Scholar 

  27. Barthlott, W., Lauer, W. & Placke, A. Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50, 317–327 (1996)

    Article  Google Scholar 

  28. Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl Acad. Sci. USA 100, 10309–10313 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Pitman, N. C. A., Terborgh, J., Silman, M. R. & Nuňez, V. P. Tree species distributions in an upper Amazonian forest. Ecology 80, 2651–2661 (1999)

    Article  Google Scholar 

  30. Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005)

    Article  Google Scholar 

  31. Reiner, E. J. & Robbins, R. G. The Middle Sepik Plains, New Guinea: A physiographic study. Geogr. Rev. 54, 20–44 (1964)

    Article  Google Scholar 

  32. Wurm, S. A. & Hattori, S. Language Atlas of the Pacific Area (Australian Academy of the Humanities, Canberra, 1981)

    Google Scholar 

  33. Novotny, V. & Drozd, P. Size distribution of conspecific populations: peoples of New Guinea. Proc. R. Soc. Lond. B 267, 947–952 (2000)

    Article  CAS  Google Scholar 

  34. Paijmans, K. (ed.) New Guinea Vegetation (Australian National Univ. Press, Canberra, 1976)

    Google Scholar 

  35. Wood, A. W. The soils of New Guinea. In Biogeography and Ecology of New Guinea (ed. Gressitt, J. L.) 73–86 (W. Junk, The Hague, 1982)

    Chapter  Google Scholar 

  36. Fletcher, B. S. Dacine fruit flies collected during the dry season in the lowland rainforest of Madang Province, Papua New Guinea (Diptera: Tephritidae). Aust. J. Entomol. 37, 315–318 (1998)

    Article  Google Scholar 

  37. Basset, Y. et al. Conservation and biological monitoring of tropical forests: the role of parataxonomists. J. Appl. Ecol. 41, 163–174 (2004)

    Article  Google Scholar 

  38. Novotny, V. et al. Predictably simple: communities of caterpillars (Lepidoptera) feeding on rainforest trees in Papua New Guinea. Proc. R. Soc. Lond.. B 269, 2337–2344 (2002)

    Google Scholar 

  39. Pigram, C. J. & Davies, H. L. Terranes and the accretion history of the New Guinea orogen. J. Austral. Geol. Geophys. 10, 193–211 (1987)

    Google Scholar 

  40. Davies, H. L., Perembo, R. C. B., Winn, R. D. & KenGemar, P. Terranes of the New Guinea orogen. In Proceedings of the Geology Exploration and Mining Conference, Madang (ed. Hancock, G.) 61–66 (Australasian Institute of Mining and Metallurgy, Melbourne, 1997)

  41. Abbott, L. D. Neogene tectonic reconstruction of the Adelbert-Finisterre-New Britain collision, northern Papua New Guinea. J. S. E. Asian Earth Sci. 11, 33–51 (1995)

    Article  ADS  Google Scholar 

  42. Swadling, P. Changing shorelines and cultural orientations in the Sepik-Ramu, Papua New Guinea: implications for Pacific prehistory. World Archaeol. 29, 1–14 (1997)

    Article  Google Scholar 

  43. Nix, H. A. & Kalma, J. D. Climate as a dominant control in the biogeography of northern Australia and New Guinea. In Bridge and Barrier: the Natural and Cultural History of Torres Straight (ed. Walker, D.) 61–92 (Australian National University, Canberra, 1972)

    Google Scholar 

  44. Leps, J., Novotny, V. & Basset, Y. Habitat and successional status of plants in relation to the communities of their leaf-chewing herbivores in Papua New Guinea. J. Ecol. 89, 186–199 (2001)

    Article  Google Scholar 

  45. Hebert, P. D., Penton, N. E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl Acad. Sci. USA 101, 14812–14817 (2004)

    Article  ADS  CAS  Google Scholar 

  46. Hulcr, J. et al. DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera: Tortricidae). Mol. Ecol. Notes 7, 549–557 (2007)

    Article  CAS  Google Scholar 

  47. Beaver, R. A. Insect-fungus relationship in the bark and ambrosia beetles. In Insect-Fungus Interactions (eds Wilding, N., Collins, N. M., Hammond, P. M. & Webber, J. F.) 121–143 (Academic, London, 1989)

    Chapter  Google Scholar 

  48. Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L. & Schultz, T. R. The evolution of agriculture in insects. Annu. Rev. Ecol. Syst. 36, 563–595 (2005)

    Article  Google Scholar 

  49. Beaver, R. A. Host specificity of temperate and tropical animals. Nature 281, 139–141 (1979)

    Article  ADS  Google Scholar 

  50. Farrell, B. D. et al. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55, 2011–2027 (2001)

    Article  CAS  Google Scholar 

  51. Drew, R. A. I. The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian regions. Mem. Queensl. Mus. 26, 1–521 (1989)

    Google Scholar 

  52. Clarke, A. R. et al. Distribution and biogeography of Bactrocera and Dacus species (Diptera: Tephritidae) in Papua New Guinea. Aust. J. Entomol. 43, 148–156 (2004)

    Article  Google Scholar 

  53. Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence and absence data. J. Anim. Ecol. 72, 367–382 (2003)

    Article  Google Scholar 

  54. Colwell, R. K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 7. 5 <http://purl.oclc.org/estimates> (2005)

Download references

Acknowledgements

We thank D. Bito, W. Boen, A. Borney, L. Cizek, G. Damag, A. Krasa, J. Kua, R. Kutil, R. Lilip, M. Manaono, M. Rimandai, S. Sau, G. Sosanika, D. Stancik, V. Iwam and D. Wal for technical assistance, and V. O. Becker, J. Brown, A. Cognato, L. Craven, K. Damas, C. Drew, J. D. Holloway, M. Horak, K. Maes, J. Miller, E. G. Munroe, M. Shaffer, A. M. Solis, D. Stancik, W. Takeuchi and K. Tuck for taxonomic assistance. More than 150 insect collectors contributed to the study. P. Herbert provided DNA barcodes; J. Leps advised on statistical analysis; R. Condit, H. L. Davies, O. Diserud, J. Chave, M. Heads, J. Hrcek, D. H. Janzen, O. T. Lewis, F. Ødegaard, D. Storch and C. O. Webb commented on the manuscript. This work was supported by the National Science Foundation (USA), Grant Agencies of the Czech Republic, Czech Academy of Sciences and Czech Ministry of Education, Darwin Initiative for the Survival of Species (UK), David and Lucile Packard Fellowship in Science and Engineering, the National Geographic Society (USA), and The International Centre for the Management of Pest Fruit Flies (Griffith University). We thank Papua New Guinean customary landowners for allowing us to work in their forests. We dedicate this work to the late Richard Kutil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Novotny.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Results, Supplementary Figures S1-S5 with Legends, Supplementary Tables S1-S3 and Supplementary Appendices S1-S4. (PDF 272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novotny, V., Miller, S., Hulcr, J. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–695 (2007). https://doi.org/10.1038/nature06021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06021

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing