Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum

Abstract

Lipids are not encoded by a DNA template and therefore cannot be mutated, knocked out or knocked down. This by no means renders them impotent from a cell biological perspective. Here I propose a model for the involvement of lipid rearrangements in the execution of crucial steps in (glyco)protein quality control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biogenesis of lipid droplets and a model for their involvement in escape of macromolecules and viruses from the ER.

Similar content being viewed by others

References

  1. Osborne, A. R., Rapoport, T. A. & van den Berg, B. Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529–550 (2005)

    Article  CAS  Google Scholar 

  2. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nature Cell Biol. 7, 766–772 (2005)

    Article  CAS  Google Scholar 

  3. Romisch, K. Endoplasmic reticulum-associated degradation. Annu. Rev. Cell Dev. Biol. 21, 435–456 (2005)

    Article  CAS  Google Scholar 

  4. Tsai, B., Ye, Y. & Rapoport, T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biol. 3, 246–255 (2002)

    Article  CAS  Google Scholar 

  5. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nature Rev. Mol. Cell Biol. 4, 181–191 (2003)

    Article  CAS  Google Scholar 

  6. Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Varshavsky, A. Regulated protein degradation. Trends Biochem. Sci. 30, 283–286 (2005)

    Article  CAS  Google Scholar 

  8. Schekman, R. Cell biology: a channel for protein waste. Nature 429, 817–818 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Lilley, B. N., Gilbert, J. M., Ploegh, H. L. & Benjamin, T. L. Murine polyomavirus requires the endoplasmic reticulum protein Derlin-2 to initiate infection. J. Virol. 80, 8739–8744 (2006)

    Article  CAS  Google Scholar 

  14. Gilbert, J., Ou, W., Silver, J. & Benjamin, T. Downregulation of protein disulfide isomerase inhibits infection by the mouse polyomavirus. J. Virol. 80, 10868–10870 (2006)

    Article  CAS  Google Scholar 

  15. Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R. & Fujimoto, T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J. Biol. Chem. 277, 44507–44512 (2002)

    Article  CAS  Google Scholar 

  16. Martin, S. & Parton, R. G. Lipid droplets: a unified view of a dynamic organelle. Nature Rev. Mol. Cell Biol. 7, 373–378 (2006)

    Article  CAS  Google Scholar 

  17. McManaman, J. L., Zabaronick, W., Schaack, J. & Orlicky, D. J. Lipid droplet targeting domains of adipophilin. J. Lipid Res. 44, 668–673 (2003)

    Article  CAS  Google Scholar 

  18. Ostermeyer, A. G. et al. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J. Cell Biol. 152, 1071–1078 (2001)

    Article  CAS  Google Scholar 

  19. Umlauf, E. et al. Association of stomatin with lipid bodies. J. Biol. Chem. 279, 23699–23709 (2004)

    Article  CAS  Google Scholar 

  20. Liu, P. et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279, 3787–3792 (2004)

    Article  CAS  Google Scholar 

  21. Brasaemle, D. L., Dolios, G., Shapiro, L. & Wang, R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3–L1 adipocytes. J. Biol. Chem. 279, 46835–46842 (2004)

    Article  CAS  Google Scholar 

  22. Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)

    Article  ADS  CAS  Google Scholar 

  23. van Meer, G. & Sprong, H. Membrane lipids and vesicular traffic. Curr. Opin. Cell Biol. 16, 373–378 (2004)

    Article  CAS  Google Scholar 

  24. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001)

    Article  CAS  Google Scholar 

  25. Liao, S., Lin, J., Do, H. & Johnson, A. E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997)

    Article  CAS  Google Scholar 

  26. de Jong, A. S. et al. The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi. J. Biol. Chem. 281, 14144–14150 (2006)

    Article  CAS  Google Scholar 

  27. van Kuppeveld, F. J. et al. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J. 16, 3519–3532 (1997)

    Article  CAS  Google Scholar 

  28. Wiertz, E. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996)

    Article  CAS  Google Scholar 

  29. Blom, D., Hirsch, C., Stern, P., Tortorella, D. & Ploegh, H. L. A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J. 23, 650–658 (2004)

    Article  CAS  Google Scholar 

  30. Misaghi, S., Pacold, M. E., Blom, D., Ploegh, H. L. & Korbel, G. A. Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem. Biol. 11, 1677–1687 (2004)

    Article  CAS  Google Scholar 

  31. Daniels, R., Svedine, S. & Hebert, D. N. N-linked carbohydrates act as lumenal maturation and quality control protein tags. Cell Biochem. Biophys. 41, 113–138 (2004)

    Article  CAS  Google Scholar 

  32. Rudd, P. M. et al. The effects of variable glycosylation on the functional activities of ribonuclease, plasminogen and tissue plasminogen activator. Biochim. Biophys. Acta 1248, 1–10 (1995)

    Article  Google Scholar 

  33. Tirosh, B., Furman, M. H., Tortorella, D. & Ploegh, H. L. Protein unfolding is not a prerequisite for endoplasmic reticulum-to-cytosol dislocation. J. Biol. Chem. 278, 6664–6672 (2003)

    Article  CAS  Google Scholar 

  34. Fiebiger, E., Story, C., Ploegh, H. L. & Tortorella, D. Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. EMBO J. 21, 1041–1053 (2002)

    Article  CAS  Google Scholar 

  35. Furman, M. H., Loureiro, J., Ploegh, H. L. & Tortorella, D. Ubiquitinylation of the cytosolic domain of a type I membrane protein is not required to initiate its dislocation from the endoplasmic reticulum. J. Biol. Chem. 278, 34804–34811 (2003)

    Article  CAS  Google Scholar 

  36. Ohsaki, Y., Cheng, J., Fujita, A., Tokumoto, T. & Fujimoto, T. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol. Biol. Cell 17, 2674–2683 (2006)

    Article  CAS  Google Scholar 

  37. Fujimoto, T. & Ohsaki, Y. Proteasomal and autophagic pathways converge on lipid droplets. Autophagy 2, 299–301 (2006)

    Article  CAS  Google Scholar 

  38. Loureiro, J. & Ploegh, H. L. Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv. Immunol. 92, 225–305 (2006)

    Article  CAS  Google Scholar 

  39. Heemels, M. T. & Ploegh, H. Generation, translocation, and presentation of MHC class I-restricted peptides. Annu. Rev. Biochem. 64, 463–491 (1995)

    Article  CAS  Google Scholar 

  40. Cresswell, P. Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259–293 (1994)

    Article  CAS  Google Scholar 

  41. Cresswell, P., Ackerman, A. L., Giodini, A., Peaper, D. R. & Wearsch, P. A. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–157 (2005)

    Article  CAS  Google Scholar 

  42. Ackerman, A. L. & Cresswell, P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nature Immunol. 5, 678–684 (2004)

    Article  CAS  Google Scholar 

  43. Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003)

    Article  ADS  CAS  Google Scholar 

  44. Imai, J., Hasegawa, H., Maruya, M., Koyasu, S. & Yahara, I. Exogenous antigens are processed through the endoplasmic reticulum-associated degradation (ERAD) in cross-presentation by dendritic cells. Int. Immunol. 17, 45–53 (2005)

    Article  CAS  Google Scholar 

  45. Ackerman, A. L., Giodini, A. & Cresswell, P. A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity 25, 607–617 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank E. Klemm, J. Loureiro and B. Mueller, as well as D. Hoekstra and G. van Meer, for discussions. I thank T. Di Cesare for the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidde L. Ploegh.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ploegh, H. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448, 435–438 (2007). https://doi.org/10.1038/nature06004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06004

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing