Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-resolution spectroscopy of two-dimensional electron systems

Abstract

Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions1. These techniques, such as photoemission and tunnelling, yield measurements of the ‘single-particle’ density of states spectrum of a system2. This density of states is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy, and is among the most fundamental and directly calculable quantities in theories of highly interacting systems3. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect4, has proved difficult to probe spectroscopically. Here we present an improved version of time-domain capacitance spectroscopy5 that allows us to measure the single-particle density of states of a 2DES with unprecedented fidelity and resolution. Using the method, we perform measurements of a cold 2DES, providing direct measurements of interesting correlated electronic effects at energies that are difficult to reach with other techniques; these effects include the single-particle exchange-enhanced spin gap6, single-particle lifetimes7 in the quantum Hall system, and exchange splitting of Landau levels not at the Fermi surface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-domain capacitance spectroscopy.
Figure 2: Single-particle density of states spectra.
Figure 3: Exchange-enhanced spin splitting at the Fermi energy.
Figure 4: Quasiparticle lifetimes.

Similar content being viewed by others

References

  1. Giaever, I. Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960)

    Article  ADS  Google Scholar 

  2. Bardeen, J. Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961)

    Article  ADS  CAS  Google Scholar 

  3. Hedin, L., Lundqvist, B. I. & Lundqvist, S. in Electronic Density of States (ed. Bennett, L. H.) 233–249 (NBS Spec. Publ. 323, National Bureau of Standards, Washington DC, 1971)

    Google Scholar 

  4. Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999)

    Article  MathSciNet  CAS  Google Scholar 

  5. Chan, H. B., Glicofridis, P. I., Ashoori, R. C. & Melloch, M. R. Universal linear density of states for tunneling into the two-dimensional electron gas in a magnetic field. Phys. Rev. Lett. 79, 2867–2870 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Ando, T. & Uemura, Y. Theory of oscillatory g factor in an MOS inversion layer under strong magnetic fields. J. Phys. Soc. Jpn 37, 1044–1052 (1974)

    Article  ADS  CAS  Google Scholar 

  7. Chaplik, A. V. Energy spectrum and electron scattering processes in inversion layers. Sov. Phys. JETP 33, 997–1000 (1971)

    ADS  Google Scholar 

  8. Pinczuk, A. et al. Observation of roton density of states in two-dimensional Landau-level excitations. Phys. Rev. Lett. 61, 2701–2704 (1988)

    Article  ADS  CAS  Google Scholar 

  9. Kukushkin, I. V. & Timofeev, V. B. Magneto-optics of strongly correlated two-dimensional electrons in single heterojunctions. Adv. Phys. 45, 147–242 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Mendez, E. E., Esaki, L. & Wang, W. I. Resonant magnetotunneling in GaAlAs-GaAs-GaAlAs heterostructures. Phys. Rev. B 33, 2893–2896 (1986)

    Article  ADS  CAS  Google Scholar 

  11. Eisenstein, J. P., Gramila, T. J., Pfeiffer, L. N. & West, K. W. Probing a two-dimensional Fermi surface by tunneling. Phys. Rev. B 44, 6511–6514 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Main, P. C. et al. Landau-level spectroscopy of a two-dimensional electron system by tunneling through a quantum dot. Phys. Rev. Lett. 84, 729–732 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Aleiner, I. L., Baranger, H. U. & Glazman, L. I. Tunneling into a two-dimensional electron liquid in a weak magnetic field. Phys. Rev. Lett. 74, 3435–3438 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Ashoori, R. C., Lebens, J. A., Bigelow, N. P. & Silsbee, R. H. Equilibrium tunneling from the two-dimensional electron gas in GaAs — evidence for a magnetic-field-induced energy gap. Phys. Rev. Lett. 64, 681–684 (1990)

    Article  ADS  CAS  Google Scholar 

  15. Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Coulomb barrier to tunneling between parallel two-dimensional electron systems. Phys. Rev. Lett. 69, 3804–3807 (1992)

    Article  CAS  Google Scholar 

  16. Popov, V. G. Self-consistent equilibrium of a two-dimensional electron system with a reservoir in a quantizing magnetic field: Analytical approach. Phys. Rev. B 73, 125310 (2006)

    Article  ADS  Google Scholar 

  17. Ashoori, R. The Density of States in the Two-Dimensional Electron Gas and Quantum Dots. PhD thesis, Cornell Univ. (1991); 〈http://arXiv.org/abs/cond-mat/0607739

  18. Dolgopolov, V. T. et al. Direct measurements of the spin gap in the two-dimensional electron gas of AlGaAs-GaAs heterojunctions. Phys. Rev. Lett. 79, 729–732 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Usher, A., Nicholas, R. J., Harris, J. J. & Foxon, C. T. Observation of magnetic excitons and spin waves in activation studies of a two-dimensional electron gas. Phys. Rev. B 41, 1129–1134 (1990)

    Article  ADS  CAS  Google Scholar 

  20. Schmeller, A., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for skyrmions and single spin flips in the integer quantized Hall effect. Phys. Rev. Lett. 75, 4290–4293 (1995)

    Article  ADS  CAS  Google Scholar 

  21. MacDonald, A. H., Oji, H. C. A. & Liu, K. L. Thermodynamic properties of an interacting two-dimensional electron gas in a strong magnetic field. Phys. Rev. B 34, 2681–2689 (1986)

    Article  ADS  CAS  Google Scholar 

  22. Aleiner, I. L. & Glazman, L. I. Two-dimensional electron liquid in a weak magnetic field. Phys. Rev. B 52, 11296–11312 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Smith, A. P., MacDonald, A. H. & Gumbs, G. Quasiparticle effective mass and enhanced g factor for a two-dimensional electron gas at intermediate magnetic fields. Phys. Rev. B 45, 8829–8832 (1992)

    Article  CAS  Google Scholar 

  24. Iordanski, S. V. & Kasbuba, A. Excitations in a quantum Hall ferromagnet with strong Coulomb interaction. JETP Lett. 75, 348–353 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Murphy, S. Q., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Lifetime of two-dimensional electrons measured by tunneling spectroscopy. Phys. Rev. B 52, 14825–14828 (1995)

    Article  ADS  CAS  Google Scholar 

  26. Yacoby, A., Sivan, U., Umbach, C. P. & Hong, J. M. Interference and dephasing by electron-electron interaction on length scales shorter than the elastic mean free path. Phys. Rev. Lett. 66, 1938–1941 (1991)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research and by the National Science Foundation funded through the NSEC Program and the MRSEC Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. E. Dial or R. C. Ashoori.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes with additional information on the tunneling matrix element correction applied to the spectra and the finite lifetime due to electron-electron scattering and Supplementary Figures 1-3. (PDF 601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dial, O., Ashoori, R., Pfeiffer, L. et al. High-resolution spectroscopy of two-dimensional electron systems. Nature 448, 176–179 (2007). https://doi.org/10.1038/nature05982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05982

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing