Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural snapshots along the reaction pathway of ferredoxin–thioredoxin reductase

Abstract

Oxygen-evolving photosynthetic organisms regulate carbon metabolism through a light-dependent redox signalling pathway1. Electrons are shuttled from photosystem I by means of ferredoxin (Fdx) to ferredoxin–thioredoxin reductase (FTR), which catalyses the two-electron-reduction of chloroplast thioredoxins (Trxs). These modify target enzyme activities by reduction, regulating carbon flow2. FTR is unique in its use of a [4Fe–4S] cluster and a proximal disulphide bridge in the conversion of a light signal into a thiol signal2. We determined the structures of FTR in both its one- and its two-electron-reduced intermediate states and of four complexes in the pathway, including the ternary Fdx–FTR–Trx complex. Here we show that, in the first complex (Fdx–FTR) of the pathway, the Fdx [2Fe–2S] cluster is positioned suitably for electron transfer to the FTR [4Fe–4S] centre. After the transfer of one electron, an intermediate is formed in which one sulphur atom of the FTR active site is free to attack a disulphide bridge in Trx and the other sulphur atom forms a fifth ligand for an iron atom in the FTR [4Fe–4S] centre—a unique structure in biology. Fdx then delivers a second electron that cleaves the FTR–Trx heterodisulphide bond, which occurs in the Fdx–FTR–Trx complex. In this structure, the redox centres of the three proteins are aligned to maximize the efficiency of electron transfer from the Fdx [2Fe–2S] cluster to the active-site disulphide of Trxs. These results provide a structural framework for understanding the mechanism of disulphide reduction by an iron–sulphur enzyme3 and describe previously unknown interaction networks for both Fdx and Trx (refs 4–6).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structures of Fdx–FTR, FTR–Trx- f (C49S) and Fdx–FTR–Trx- f (C49S) complexes.
Figure 2: Interactions of Fdx–FTR, FTR–Trx- f (C49S) and Fdx–FTR–Trx- f (C49S) complexes.
Figure 3: FTR mechanism proposed on the basis of current structural and spectroscopic b15 investigations.
Figure 4: Comparison of the active sites of FTR at different reaction states.

Similar content being viewed by others

References

  1. Buchanan, B. B. & Balmer, Y. Redox regulation: a broadening horizon. Annu. Rev. Plant Biol. 56, 187–220 (2005)

    Article  CAS  Google Scholar 

  2. Schürmann, P. Redox signaling in the chloroplast: the ferredoxin/thioredoxin system. Antioxid. Redox Signal. 5, 69–78 (2003)

    Article  Google Scholar 

  3. Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. Structure, function, and formation of biological iron–sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005)

    Article  CAS  Google Scholar 

  4. Kurisu, G. et al. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase. Nature Struct. Biol. 8, 117–121 (2001)

    Article  CAS  Google Scholar 

  5. Morales, R. et al. A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Rep. 1, 271–276 (2000)

    Article  CAS  Google Scholar 

  6. Lennon, B. W., Williams, C. H. & Ludwig, M. L. Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science 289, 1190–1194 (2000)

    Article  CAS  ADS  Google Scholar 

  7. Dai, S. et al. How does light regulate chloroplast enzymes? Structure–function studies of the ferredoxin/thioredoxin system. Q. Rev. Biophys. 33, 67–108 (2000)

    Article  CAS  Google Scholar 

  8. van den Heuvel, R. H. et al. The active conformation of glutamate synthase and its binding to ferredoxin. J. Mol. Biol. 330, 113–128 (2003)

    Article  CAS  Google Scholar 

  9. Xu, X. et al. Ferredoxin/ferredoxin–thioredoxin reductase complex: complete NMR mapping of the interaction site on ferredoxin by gallium substitution. FEBS Lett. 580, 6714–6720 (2006)

    Article  CAS  Google Scholar 

  10. Onuchic, J. N., Beratan, D. N., Winkler, J. R. & Gray, H. B. Pathway analysis of protein electron-transfer reactions. Annu. Rev. Biophys. Biomol. Struct. 21, 349–377 (1992)

    Article  CAS  Google Scholar 

  11. Dai, S., Schwendtmayer, C., Schürmann, P., Ramaswamy, S. & Eklund, H. Redox signaling in chloroplasts: cleavage of disulfides by an iron–sulfur cluster. Science 287, 655–658 (2000)

    Article  CAS  ADS  Google Scholar 

  12. Knaff, D. B. in Advances in Photosynthesis (eds Ort, D. R. & Yocum, C. F.) 333–361 (Kluwer Academic, Dordrecht, 1996)

  13. Jameson, G. N. et al. Spectroscopic evidence for site specific chemistry at a unique iron site of the [4Fe–4S] cluster in ferredoxin:thioredoxin reductase. J. Am. Chem. Soc. 125, 1146–1147 (2003)

    Article  CAS  Google Scholar 

  14. Staples, C. R. et al. Role of the [Fe4S4] cluster in mediating disulfide reduction in spinach ferredoxin:thioredoxin reductase. Biochemistry 37, 4612–4620 (1998)

    Article  CAS  Google Scholar 

  15. Walters, E. M. et al. Spectroscopic characterization of site-specific [Fe4S4] cluster chemistry in ferredoxin:thioredoxin reductase: implications for the catalytic mechanism. J. Am. Chem. Soc. 127, 9612–9624 (2005)

    Article  CAS  Google Scholar 

  16. Berkovitch, F., Nicolet, Y., Wan, J. T., Jarrett, J. T. & Drennan, C. L. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303, 76–79 (2004)

    Article  CAS  ADS  Google Scholar 

  17. Hanzelmann, P. & Schindelin, H. Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc. Natl Acad. Sci. USA 101, 12870–12875 (2004)

    Article  ADS  Google Scholar 

  18. Lauble, H., Kennedy, M. C., Beinert, H. & Stout, C. D. Crystal structures of aconitase with trans-aconitate and nitrocitrate bound. J. Mol. Biol. 237, 437–451 (1994)

    Article  CAS  Google Scholar 

  19. Layer, G., Moser, J., Heinz, D. W., Jahn, D. & Schubert, W. D. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes. EMBO J. 22, 6214–6224 (2003)

    Article  CAS  Google Scholar 

  20. Lepore, B. W., Ruzicka, F. J., Frey, P. A. & Ringe, D. The X-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale. Proc. Natl Acad. Sci. USA 102, 13819–13824 (2005)

    Article  CAS  ADS  Google Scholar 

  21. Staples, C. R. et al. The function and properties of the iron–sulfur center in spinach ferredoxin:thioredoxin reductase: a new biological role for iron–sulfur clusters. Biochemistry 35, 11425–11434 (1996)

    Article  CAS  Google Scholar 

  22. Hirasawa, M. et al. Oxidation–reduction properties of chloroplast thioredoxins, ferredoxin:thioredoxin reductase, and thioredoxin f-regulated enzymes. Biochemistry 38, 5200–5205 (1999)

    Article  CAS  Google Scholar 

  23. Giastas, P. et al. The structure of the 2[4Fe–4S] ferredoxin from Pseudomonas aeruginosa at 1.32-Å resolution: comparison with other high-resolution structures of ferredoxins and contributing structural features to reduction potential values. J. Biol. Inorg. Chem. 11, 445–458 (2006)

    Article  CAS  Google Scholar 

  24. Buchanan, B. B., Schürmann, P., Decottignies, P. & Lozano, R. M. Thioredoxin: a multifunctional regulatory protein with a bright future in technology and medicine. Arch. Biochem. Biophys. 314, 257–260 (1994)

    Article  CAS  Google Scholar 

  25. Glauser, D. A., Bourquin, F., Manieri, W. & Schürmann, P. Characterization of ferredoxin:thioredoxin reductase modified by site-directed mutagenesis. J. Biol. Chem. 279, 16662–16669 (2004)

    Article  CAS  Google Scholar 

  26. Walters, E. M. & Johnson, M. K. Ferredoxin:thioredoxin reductase: disulfide reduction catalyzed via novel site-specific [4Fe–4S] cluster chemistry. Photosynth. Res. 79, 249–264 (2004)

    Article  CAS  Google Scholar 

  27. Chen, K. et al. Crystal structures of ferredoxin variants exhibiting large changes in [Fe–S] reduction potential. Nature Struct. Biol. 9, 188–192 (2002)

    CAS  PubMed  Google Scholar 

  28. Duin, E. C., Madadi-Kahkesh, S., Hedderich, R., Clay, M. D. & Johnson, M. K. Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe–4S] cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett. 512, 263–268 (2002)

    Article  CAS  Google Scholar 

  29. Chen, D., Walsby, C., Hoffman, B. M. & Frey, P. A. Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe–4S] center in lysine 2,3-aminomutase. J. Am. Chem. Soc. 125, 11788–11789 (2003)

    Article  CAS  Google Scholar 

  30. Schürmann, P. & Gardet-Salvi, L. Chemical modification of the active site of ferredoxin–thioredoxin reductase. Chimia 47, 245–246 (1993)

    Google Scholar 

  31. Manieri, W. et al. N-terminal truncation of the variable subunit stabilizes spinach ferredoxin:thioredoxin reductase. FEBS Lett. 549, 167–170 (2003)

    Article  CAS  Google Scholar 

  32. Balmer, Y. & Schürmann, P. Heterodimer formation between thioredoxin f and fructose 1,6-bisphosphatase from spinach chloroplasts. FEBS Lett. 492, 58–61 (2001)

    Article  CAS  Google Scholar 

  33. Schürmann, P. Ferredoxin:thioredoxin system. Methods Enzymol. 252, 274–283 (1995)

    Article  Google Scholar 

  34. Wedel, N., Clausmeyer, S., Herrmann, R. G., Gardet-Salvi, L. & Schürmann, P. Nucleotide sequence of cDNAs encoding the entire precursor polypeptide for thioredoxin m from spinach chloroplasts. Plant Mol. Biol. 18, 527–533 (1992)

    Article  CAS  Google Scholar 

  35. Stura, E. A. in Crystallization of Nucleic Acids and Proteins. A Practical Approach (eds Ducruix, A. & Giegé, R.) 99–126 (Oxford Univ. Press, New York, 1999)

  36. Schürmann, P., Stritt-Etter, A. L. & Li, J. Reduction of ferredoxin:thioredoxin reductase by artificial electron donors. Photosynth. Res. 46, 309–312 (1995)

    Article  Google Scholar 

  37. Balmer, Y. et al. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc. Natl Acad. Sci. USA 100, 370–375 (2003)

    Article  CAS  ADS  Google Scholar 

  38. Brunger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992)

    Article  CAS  ADS  Google Scholar 

  39. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  40. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  41. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  42. Kleywegt, G. J., Henrick, K., Dodson, E. J. & van Aalten, D. M. Pound-wise but penny-foolish: how well do micromolecules fare in macromolecular refinement? Structure 11, 1051–1059 (2003)

    Article  CAS  Google Scholar 

  43. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  44. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  CAS  Google Scholar 

  45. DeLano, W. The PyMOL Molecular Graphics System. 〈http://www.pymol.org〉 (2002)

  46. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  47. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  48. Lelong, C., Setif, P., Bottin, H., Andre, F. & Neumann, J. M. 1H and 15N NMR sequential assignment, secondary structure, and tertiary fold of [2Fe–2S] ferredoxin from Synechocystis sp. PCC 6803. Biochemistry 34, 14462–14473 (1995)

    Article  CAS  Google Scholar 

  49. Powell, H. R. The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr. D 55, 1690–1695 (1999)

    Article  CAS  Google Scholar 

  50. Collaborative Computational Project No 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  51. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kappler, P. Marrack and J. Bolin for support and encouragement; the Zuckerman/Canyon Ranch and A. Lapporte for support of the X-ray and computing facilities; the Howard Hughes Medical Institute beamlines at Advanced Light Source (ALS), the Structural Biology Centre at Advanced Photon Source (APS), and the European Synchrotron Radiation Facility (ESRF) for synchrotron data. H.E. was supported by the Swedish Council for Forestry and Agricultural Research and the Swedish Natural Science Research Council, and P.S. was supported by the Schweizerischer Nationalfonds.

Author Contributions S.D., R.F., D.A.G., F.B., W.M. and P.S. performed the experiments. S.D., R.F., P.S. and H.E. designed and prepared the manuscript.

The atomic coordinates and structure factors of Fdx–FTR, NEM-FTR, two-electron-reduced FTR, FTR–Trx-f(C49S), Fdx–FTR–Trx-f(C49S) and FTR–Trx-m(C40S) have been deposited in the RCSB Protein Data Bank under accession codes 2PVG, 2PUO, 2PVD, 2PU9, 2PVO and 2PUK, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaodong Dai.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9 and Supplementary Tables 1-2 with Legends and additional references. (PDF 4233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, S., Friemann, R., Glauser, D. et al. Structural snapshots along the reaction pathway of ferredoxin–thioredoxin reductase. Nature 448, 92–96 (2007). https://doi.org/10.1038/nature05937

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05937

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing