Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin dynamics and the preservation of genetic information

Abstract

The integrity of the genome is frequently challenged by double-strand breaks in the DNA. Defects in the cellular response to double-strand breaks are a major cause of cancer and other age-related pathologies; therefore, much effort has been directed at understanding the enzymatic mechanisms involved in recognizing, signalling and repairing double-strand breaks. Recent work indicates that chromatin — the fibres into which DNA is packaged with a proteinaceous structural polymer — has an important role in initiating, propagating and terminating this cellular response to DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the nucleosome core particle and modifications of histones.
Figure 2: Main DSB-repair and DSB-induced signalling pathways.
Figure 3: Early chromatin remodelling and modification events at S. cerevisiae DSBs.

Similar content being viewed by others

References

  1. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Takahashi, K. & Kaneko, I. Changes in nuclease sensitivity of mammalian cells after irradiation with 60Co γ-rays. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 48, 389–395 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Shim, E. Y. et al. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell. Biol. 27, 1602–1613 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsukuda, T., Fleming, A. B., Nickoloff, J. A. & Osley, M. A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379–383 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rouse, J. & Jackson, S. P. Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308, 551–554 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Dupre, A. Boyer-Chatenet, L. & Gautier, J. Two-step activation of ATM by DNA and the Mre11–Rad50–Nbs1 complex. Nature Struct. Mol. Biol. 13, 451–457 (2006).

    Article  CAS  Google Scholar 

  15. You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell. Biol. 25, 5363–5379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pellegrini, M. et al. Autophosphorylation at serine 1987 is dispensable for murine ATM activation in vivo. Nature 443, 222–225 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Meek, K., Gupta, S., Ramsden, D. A. & Lees-Miller, S. P. The DNA-dependent protein kinase: the director at the end. Immunol. Rev. 200, 132–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Kumagai, A., Lee, J., Yoo, H. Y. & Dunphy, W. G. TopBP1 activates the ATR–ATRIP complex. Cell 124, 943–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Fernandez-Capetillo, O., Celeste, A. & Nussenzweig, A. Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle 2, 426–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Bekker-Jensen S. et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173, 195–206 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reina-San-Martin, B. et al. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J. Exp. Med. 197, 1767–1778 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kruhlak, M. J., Celeste, A. & Nussenzweig, A. Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle 5, 1910–1912 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biol. 8, 870–876 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Flaus, A., Martin, D. M., Barton, G. J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Angus-Hill, M. L. et al. A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol. Cell 7, 741–751 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Cairns, B. R. et al. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol. Cell 4, 715–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Bennett, C. B. et al. Genes required for ionizing radiation resistance in yeast. Nature Genet. 29, 426–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Shim, E. Y., Ma, J. L., Oum, J. H., Yanez, Y. & Lee, S. E. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol. Cell. Biol. 25, 3934–3944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chai, B., Huang, J., Cairns, B. R. & Laurent, B. C. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656–1661 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Downs, J. A., Kosmidou, E., Morgan, A. & Jackson, S. P. Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Mol. Cell 11, 1685–1692 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hill, D. A. & Imbalzano, A. N. Human SWI/SNF nucleosome remodeling activity is partially inhibited by linker histone H1. Biochemistry 39, 11649–11656 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Park, J. H. et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J. 25, 3986–3997 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777–788 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Shen, X., Mizuguchi, G., Hamich A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541–544 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Downs, J. A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979–990 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Morrison, A. J. et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Papamichos-Chronakis, M., Krebs, J. E. & Peterson, C. L. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 20, 2437–2449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Toh, G. W. et al. Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation. DNA Repair (Amst.) 5, 693–703 (2006).

    Article  CAS  Google Scholar 

  44. Nakamura, T. M., Du, L.-L., Redon, C. & Russell, P. Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol. Cell. Biol. 24, 6215–6230 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Javaheri, A. et al. Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling. Proc. Natl Acad. Sci. USA 103, 13771–13776 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Downs, J. A., Lowndes, N. F. & Jackson, S. P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001–1004 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004).

    Article  PubMed  Google Scholar 

  48. Strom, L., Lindroos, H. B., Shirahige, K. & Sjogren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).

    Article  PubMed  Google Scholar 

  49. Xie, A. et al. Control of sister chromatid recombination by histone H2AX. Mol. Cell 16, 1017–1025 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Bird, A. W. et al. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Harvey, A. C., Jackson, S. P. & Downs, J. A. Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair. Genetics 170, 543–553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wyatt, H. R., Liaw, H., Green, G. R. & Lustig, A. J. Multiple roles for Saccharomyces cerevisiae histone H2A in telomere position effect, Spt phenotypes and double-strand-break repair. Genetics 164, 47–64 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahn, S. H. et al. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 120, 25–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Fernandez-Capetillo, O., Allis, C. D. & Nussenzweig, A. Phosphorylation of histone H2B at DNA double-strand breaks. J. Exp. Med. 199, 1671–1677 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahn, S. H., Henderson, K. A., Keeney, S. & Allis, C. D. H2B (Ser10) phosphorylation is induced during apoptosis and meiosis in S. cerevisiae. Cell Cycle 4, 780–783 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Odegard, V. H., Kim, S. T., Anderson, S. M., Shlomchik, M. J. & Schatz, D. J. Histone modifications associated with somatic hypermutation. Immunity 23, 101–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Qin, S. & Parthun, M. R. Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol. Cell. Biol. 26, 3649–3658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tamburini, B. A. & Tyler, J. K. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol. Cell. Biol. 25, 4903–4913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Murr, R. et al. Histone acetylation by Trrap–Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nature Cell Biol. 8, 91–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Gupta, A. et al. Involvement of human MOF in ATM function. Mol. Cell. Biol. 25, 5292–5305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Birger, Y. et al. Increased tumorigenicity and sensitivity to ionizing radiation upon loss of chromosomal protein HMGN1. Cancer Res. 65, 6711–6718 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jazayeri, A., McAinsh, A. D. & Jackson, S. P. Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc. Natl Acad. Sci. USA 101, 1644–1649 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Utley, R., Lacoste, N., Jobin-Robitaille, O., Allard, S. & Côte, J. Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol. Cell. Biol. 25, 8179–8190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheung, W. L. et al. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr. Biol. 15, 656–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Fernandez-Capetillo, O. et al. DNA damage-induced G2–M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biol. 4, 993–997 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Keogh, M. C. et al. A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery. Nature 439, 497–501 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Nussenzweig, A. & Paull, T. DNA repair: tails of histones lost. Nature 439, 406–407 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Reina-San-Martin, B., Chen, J., Nussenzweig, A. & Nussenzweig, M. C. Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1−/− B cells. Eur. J. Immunol. 37, 235–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Manis, J. P. et al. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nature Immunol. 5, 481–487 (2004).

    Article  CAS  Google Scholar 

  70. Ward, I. M. et al. 53BP1 is required for class switch recombination. J. Cell Biol. 165, 459–464 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reina-San-Martin, B., Nussenzweig, M. C., Nussenzweig, A. & Difilippantonio, S. Genomic instability, endoreduplication, and diminished Ig class-switch recombination in B cells lacking Nbs1. Proc. Natl Acad. Sci. USA 102, 1590–1595 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Honjo, T., Nagaoka, H., Shinkura, R. & Muramatsu, M. AID to overcome the limitations of genomic information. Nature Immunol. 6, 655–661 (2005).

    Article  CAS  Google Scholar 

  73. Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell 21, 201–214 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Ramiro, A. R. et al. Role of genomic instability and p53 in AID-induced c-myc–Igh translocations. Nature 440, 105–109 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ozdemir, A. et al. Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J. Biol. Chem. 280, 25949–25952 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Dirksen, E. H. et al. Human lymphoblastoid proteome analysis reveals a role for the inhibitor of acetyltransferases complex in DNA double-strand break response. Cancer Res. 66, 1473–1480 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Driscoll, R., Hudson, A. & Jackson, S.P. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315, 649–652 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Collins, S. R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Maas, N. L., Miller, K. M., DeFazio, L. G. & Toczyski, D. P. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell 23, 109–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Celic, I. H. et al. The sirtuins Hst3 and Hst4p preserve genome integrity by controlling histone H3 lysine 56 deacetylation. Curr. Biol. 16, 1280–1289 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Wysocki, R. et al. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol. Cell. Biol. 25, 8430–8443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Giannattasio, M., Lazzaro, F., Plevani, P. & Muzi-Falconi, M. The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6–Bre1 and H3 methylation by Dot1. J. Biol. Chem. 280, 9879—9886 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. DiTullio, R. A. Jr et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biol. 4, 998–1002 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J. & Lukas, J. Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J. Cell Biol. 170, 201–211 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Du, L. L., Nakamura, T. M. & Russell, P. Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks. Genes Dev. 20, 1583–1596 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schotta, G. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ryan, M. P., Jones, R. & Morse, R. H. SWI–SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol. Cell. Biol. 18, 1774–1782 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brown, C. E. et al. Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292, 2333–2337 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Falzon, M., Fewell, J. W. & Kuff, E. L. EBP-80, a transcription factor closely resembling the human autoantigen Ku, recognizes single- to double-strand transitions in DNA. J. Biol. Chem. 268, 10546–10552 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213–1226 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Lou, Z. et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell 21, 187–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Ju, B. G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Wolffe, A. P. & Hayes, J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711–720 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose research could not be cited because of space limitations. J.A.D. is a Jenner Fellow of the Lister Institute of Preventive Medicine. M.C.N. is supported by grants from the National Institutes of Health and is a Howard Hughes Medical Institute Investigator. A.N. is supported by the Intramural Research Program of the National Institutes of Health (at the Center for Cancer Research, National Cancer Institute), and the A-T Children's Project.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downs, J., Nussenzweig, M. & Nussenzweig, A. Chromatin dynamics and the preservation of genetic information. Nature 447, 951–958 (2007). https://doi.org/10.1038/nature05980

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05980

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing