Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States

Abstract

A deep-seated melt or fluid layer on top of the 410-km-deep seismic discontinuity in Earth’s upper mantle, as proposed in the transition-zone ‘water filter’ hypothesis1, may have significant bearing on mantle dynamics and chemical differentiation. The geophysical detection of such a layer has, however, proved difficult. Magnetotelluric and geomagnetic depth sounding are geophysical methods sensitive to mantle melt. Here we use these methods to search for a distinct structure near 410-km depth. We calculate one-dimensional forward models of the response of electrical conductivity depth profiles, based on mineral physics studies of the effect of incorporating hydrogen in upper-mantle and transition-zone minerals. These models indicate that a melt layer at 410-km depth is consistent with regional magnetotelluric and geomagnetic depth sounding data from the southwestern United States (Tucson)2. The 410-km-deep melt layer in this model has a conductance of 3.0 × 104 S and an estimated thickness of 5–30 km. This is the only regional data set that we have examined for which such a melt layer structure was found, consistent with regional seismic studies3. We infer that the hypothesized transition-zone water filter1 occurs regionally, but that such a layer is unlikely to be a global feature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Forward modelled MT response of upper-mantle conductivity depth profile.
Figure 2: Electrical conductivity of various melts as a function of inverse temperature.
Figure 3: Forward modelling results for the southern Basin and Range (Tucson) data set2.

Similar content being viewed by others

References

  1. Bercovici, D. & Karato, S. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Egbert, G. D., Booker, J. R. & Schultz, A. Very long period magnetotellurics at Tucson Observatory: Estimation of impedances. J. Geophys. Res. B 97, 15113–15128 (1992)

    Article  ADS  Google Scholar 

  3. Song, T. R. A., Helmberger, D. V. & Grand, S. P. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427, 530–533 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Revenaugh, J. & Sipkin, S. A. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 369, 474–476 (1994)

    Article  ADS  CAS  Google Scholar 

  5. Wang, D., Mookherjee, M., Xu, Y. S. & Karato, S. The effect of hydrogen on the electrical conductivity in olivine. Nature 443, 977–980 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Huang, X. G., Xu, Y. S. & Karato, S. I. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434, 746–749 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Gaillard, F. Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet. Sci. Lett. 218, 215–228 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Tyburczy, J. A. & Fisler, D. K. in Mineral Physics and Crystallography: A Handbook of Physical Constants (ed. Ahrens, T. J.) 185–208 (American Geophysical Union, Washington DC, 1995)

    Google Scholar 

  9. Tyburczy, J. A. & Waff, H. S. Electrical conductivity of molten basalt and andesite to 25 kilobars pressure — Geophysical significance and implications for charge transport and melt structure. J. Geophys. Res. 88, 2413–2430 (1983)

    Article  ADS  CAS  Google Scholar 

  10. Tarits, P., Hautot, S. & Perrier, F. Water in the mantle: Results from electrical conductivity beneath the French Alps. Geophys. Res. Lett. 31 L06612 doi: 10.1029/2003GL019227 (2004)

    Article  ADS  Google Scholar 

  11. Lizarralde, D., Chave, A., Hirth, G. & Schultz, A. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J. Geophys. Res. B 100, 17837–17854 (1995)

    Article  ADS  Google Scholar 

  12. Olsen, N. Long-period (30 days-1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys. J. Int. 138, 179–187 (1999)

    Article  ADS  Google Scholar 

  13. Schultz, A., Kurtz, R. D., Chave, A. D. & Jones, A. G. Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys. Res. Lett. 20, 2941–2944 (1993)

    Article  ADS  Google Scholar 

  14. Xu, Y. S., Shankland, T. J. & Poe, B. T. Laboratory-based electrical conductivity in the Earth’s mantle. J. Geophys. Res. B 105, 27865–27875 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Simpson, F. Resistance to mantle flow inferred from electromagnetic strike of the Australian upper mantle. Nature 412, 632–635 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981)

    Article  ADS  Google Scholar 

  17. Mitchell, A. C. & Nellis, W. J. Equation of state and electrical conductivity of water and ammonia shocked to 100 GPa (1Mbar) pressure range. J. Chem. Phys. 76, 6273–6281 (1982)

    Article  ADS  CAS  Google Scholar 

  18. Ohtani, E. & Maeda, M. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet. Sci. Lett. 193, 69–75 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Ohtani, E., Nagata, Y., Suzuki, A. & Kato, T. Melting relations of peridotite and the density crossover in planetary mantles. Chem. Geol. 120, 207–221 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Suzuki, A., Ohtani, E. & Kato, T. Density and thermal expansion of a peridotite melt at high pressure. Phys. Earth Planet. Inter. 107, 53–61 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Matsukage, K. N., Jing, Z. C. & Karato, S. Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature 438, 488–491 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Sakamaki, T., Suzuki, A. & Ohtani, E. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature 439, 192–194 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Kohlstedt, D. L., Keppler, H. & Rubie, D. C. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4 . Contrib. Mineral. Petrol. 123, 345–357 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D. & Rauch, F. Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res. 108 B2105 doi: 10.1029/2001JB000679 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Hirschmann, M. M., Aubaud, C. & Withers, A. C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett. 236, 167–181 (2005)

    Article  ADS  CAS  Google Scholar 

  26. van der Lee, S. & Nolet, G. Upper mantle S velocity structure of North America. J. Geophys. Res. B 102, 22815–22838 (1997)

    Article  ADS  Google Scholar 

  27. Parker, R. L. The inverse problem of electromagnetic induction — Existence and construction of solutions based on incomplete data. J. Geophys. Res. 85, 4421–4428 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Constable and E. Garnero for comments and discussion. This work was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Tyburczy.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion with Supplementary Figure S1 with Legend. (PDF 930 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toffelmier, D., Tyburczy, J. Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 447, 991–994 (2007). https://doi.org/10.1038/nature05922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05922

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing