Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chiral magnetic order at surfaces driven by inversion asymmetry

Abstract

Chirality is a fascinating phenomenon that can manifest itself in subtle ways, for example in biochemistry (in the observed single-handedness of biomolecules1) and in particle physics (in the charge-parity violation of electroweak interactions2). In condensed matter, magnetic materials can also display single-handed, or homochiral, spin structures. This may be caused by the Dzyaloshinskii–Moriya interaction, which arises from spin–orbit scattering of electrons in an inversion-asymmetric crystal field3,4. This effect is typically irrelevant in bulk metals as their crystals are inversion symmetric. However, low-dimensional systems lack structural inversion symmetry, so that homochiral spin structures may occur5. Here we report the observation of magnetic order of a specific chirality in a single atomic layer of manganese on a tungsten (110) substrate. Spin-polarized scanning tunnelling microscopy reveals that adjacent spins are not perfectly antiferromagnetic but slightly canted, resulting in a spin spiral structure with a period of about 12 nm. We show by quantitative theory that this chiral order is caused by the Dzyaloshinskii–Moriya interaction and leads to a left-rotating spin cycloid. Our findings confirm the significance of this interaction for magnets in reduced dimensions. Chirality in nanoscale magnets may play a crucial role in spintronic devices, where the spin rather than the charge of an electron is used for data transmission and manipulation. For instance, a spin-polarized current flowing through chiral magnetic structures will exert a spin-torque on the magnetic structure6,7, causing a variety of excitations or manipulations of the magnetization8,9 and giving rise to microwave emission, magnetization switching, or magnetic motors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antiferromagnetic (AFM) structure of a Mn monolayer on W(110).
Figure 2: SP-STM of the Mn monolayer on W(110) and potential spin structures.
Figure 3: Field-dependent SP-STM measurements.
Figure 4: Calculated energy of homogeneous cycloidal spin spirals.

Similar content being viewed by others

References

  1. Siegel, J. S. Single-handed cooperation. Nature 409, 777–778 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Ellis, J. Antimatter matters. Nature 424, 631–634 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Dzialoshinskii, I. E. Thermodynamic theory of ”weak” ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1262 (1957)

    MATH  Google Scholar 

  4. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  ADS  CAS  Google Scholar 

  5. Fert, A. Magnetic and transport properties of metallic multilayers. Mater. Sci. Forum 59&60, 439–443 (1990)

    Google Scholar 

  6. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 199, L1–L11 (1996)

    Article  Google Scholar 

  8. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Krivorotov, I. N. et al. Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Heisenberg, W. Zur Theorie des Ferromagnetismus. Z. Phys. 49, 619–636 (1928)

    Article  ADS  CAS  Google Scholar 

  11. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006)

    Article  ADS  Google Scholar 

  12. Uchida, M., Onose, Y., Matsui, Y. & Tokura, Y. Real-space observation of helical spin order. Science 311, 359–361 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Heinze, S. et al. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288, 1805–1808 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Bode, M. et al. Magnetization-direction–dependent local electronic structure probed by scanning tunneling spectroscopy. Phys. Rev. Lett. 89, 237205 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1988)

    Article  ADS  CAS  Google Scholar 

  16. Kubetzka, A. et al. Revealing antiferromagnetic order of the Fe monolayer on W(001): Spin-polarized scanning tunneling microscopy and first-principles calculations. Phys. Rev. Lett. 94, 087204 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Bode, M. et al. Atomic spin structure of antiferromagnetic domain walls. Nature Mater. 5, 477–481 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Heinze, S. Simulation of spin-polarized scanning tunneling microscopy images of nanoscale non-collinear magnetic structures. Appl. Phys. A 85, 407–414 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Dzyaloshinskii˘, I. E. Theory of helicoidal structures in antiferromagnets III. Sov. Phys. JETP 20, 665–668 (1965)

    Google Scholar 

  20. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  21. Pietzsch, O. et al. A low-temperature ultra-high vacuum scanning tunneling microscope with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetism. Rev. Sci. Instrum. 71, 424–430 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Bode, M. Spin-polarized scanning tunneling microscopy. Rep. Prog. Phys. 66, 523–581 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Bode, M. et al. Structural, electronic, and magnetic properties of a Mn monolayer on W(110). Phys. Rev. B 66, 014425 (2002)

    Article  ADS  Google Scholar 

  24. Wortmann, D. et al. Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 86, 4132–4135 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Yang, H., Smith, A. R., Prikhodko, M. & Lambrecht, W. R. L. Atomic-scale spin-polarized scanning tunneling microscopy applied to Mn3N2(010). Phys. Rev. Lett. 89, 226101 (2002)

    Article  ADS  Google Scholar 

  26. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  CAS  Google Scholar 

  27. Heide, M. Magnetic Domain Walls in Ultrathin Films: Contribution of the Dzyaloshinskii-Moriya Interaction. PhD thesis, RWTH-Aachen. (2006)

Download references

Acknowledgements

Financial support from the project ‘spin–orbit effects in magnetic systems’ and the Sonderforschungsbereich “Magnetismus vom Einzelatom zur Nanostruktur” of the Deutsche Forschungsgemeinschaft, from the Stifterverband für die Deutsche Wissenschaft, and from the Interdisciplinary Nanoscience Center Hamburg is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bode.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bode, M., Heide, M., von Bergmann, K. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007). https://doi.org/10.1038/nature05802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05802

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing