Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins

Abstract

All cells in nature are covered by a dense and complex array of carbohydrates. Given their prominence on cell surfaces, it is not surprising that these glycans mediate and/or modulate many cellular interactions. Proteins that bind sialic acid, a sugar that is found on the surface of the cell and on secreted proteins in vertebrates, are involved in a broad range of biological processes, including intercellular adhesion, signalling and microbial attachment. Studying the roles of such proteins in vertebrates has improved our understanding of normal physiology, disease and human evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sialic acids on cell-surface and secreted molecules.
Figure 2: Two major sialic acids in mammalian cells.
Figure 3: Proposed scenario for occurrence of multiple changes in sialobiology during human evolution.

References

  1. Rambourg, A. & Leblond, C. P. Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat. J. Cell Biol. 32, 27–53 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Varki, A. et al. Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, Plainview, New York, 1999).

    Google Scholar 

  3. Drickamer, K. & Taylor, M. Introduction to Glycobiology 2nd edn (Oxford Univ. Press, Oxford, 2006).

    Google Scholar 

  4. Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    CAS  PubMed  Google Scholar 

  5. Freeze, H. H. Genetic defects in the human glycome. Nature Rev. Genet. 7, 537–551 (2006).

    CAS  PubMed  Google Scholar 

  6. Hirschberg, C. B., Robbins, P. W. & Abeijon, C. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu. Rev. Biochem. 67, 49–69 (1998).

    CAS  PubMed  Google Scholar 

  7. Varki, A. Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol. 8, 34–40 (1998).

    CAS  PubMed  Google Scholar 

  8. Raetz, C. R. H. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    CAS  PubMed  Google Scholar 

  9. Varki, A. Nothing in glycobiology makes sense, except in the light of evolution. Cell 126, 841–845 (2006).

    CAS  PubMed  Google Scholar 

  10. Bishop, J. & Gagneux, P. Evolution of carbohydrate antigens — microbial forces shaping host glycomes? Glycobiology advance online publication, 19 January 2007 (doi:10.1093/glycob/cwm00).

  11. Carver, J. P., Michnick, S. W., Imberty, A. & Cumming, D. A. Oligosaccharide–protein interactions: a three-dimensional view. Ciba Found. Symp. 145, 6–18 (1989).

    CAS  PubMed  Google Scholar 

  12. Hakomori, S. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconj. J. 21, 125–137 (2004).

    CAS  PubMed  Google Scholar 

  13. Sharon, N. & Lis, H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R–62R (2004).

    CAS  PubMed  Google Scholar 

  14. Varki, A. & Angata, T. Siglecs — the major subfamily of I-type lectins. Glycobiology 16, 1R–27R (2006).

    CAS  PubMed  Google Scholar 

  15. Drickamer, K. & Taylor, M. E. Identification of lectins from genomic sequence data. Methods Enzymol. 362, 560–567 (2003).

    CAS  PubMed  Google Scholar 

  16. Schauer, R. Achievements and challenges of sialic acid research. Glycoconjugate J. 17, 485–499 (2000).

    CAS  Google Scholar 

  17. Angata, T. & Varki, A. Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–470 (2002).

    CAS  PubMed  Google Scholar 

  18. Vimr, E. R., Kalivoda, K. A., Deszo, E. L. & Steenbergen, S. M. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 68, 132–153 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Harduin-Lepers, A., Mollicone, R., Delannoy, P. & Oriol, R. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15, 805–817 (2005).

    CAS  PubMed  Google Scholar 

  20. Altheide, T. K. et al. System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: evidence for two modes of rapid evolution. J. Biol. Chem. 281, 25689–25702 (2006).

    CAS  PubMed  Google Scholar 

  21. Varki, A. Loss of N-glycolylneuraminic acid in humans: mechanisms, consequences and implications for hominid evolution. Am. J. Phys. Anthropol. 116 (suppl. 33), 54–69 (2001).

    Google Scholar 

  22. Prescher, J. A. & Bertozzi, C. R. Chemical technologies for probing glycans. Cell 126, 851–854 (2006).

    CAS  PubMed  Google Scholar 

  23. Wearne, K. A., Winter, H. C., O'Shea, K. & Goldstein, I. J. Use of lectins for probing differentiated human embryonic stem cells for carbohydrates. Glycobiology 16, 981–990 (2006).

    CAS  PubMed  Google Scholar 

  24. Schwarzkopf, M. et al. Sialylation is essential for early development in mice. Proc. Natl Acad. Sci. USA 99, 5267–5270 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mandal, C. Sialic acid binding lectins. Experientia 46, 433–441 (1990).

    CAS  PubMed  Google Scholar 

  26. Lehmann, F., Tiralongo, E. & Tiralongo, J. Sialic acid-specific lectins: occurrence, specificity and function. Cell. Mol. Life Sci. 63, 1331–1354 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pangburn, M. K. Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement. Immunopharmacology 49, 149–157 (2000).

    CAS  PubMed  Google Scholar 

  28. Fearon, D. T. Regulation by membrane sialic acid of β 1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc. Natl Acad. Sci. USA 75, 1971–1975 (1978).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pangburn, M. K. & Muller-Eberhard, H. J. Complement C3 convertase: cell surface restriction of β1H control and generation of restriction on neuraminidase-treated cells. Proc. Natl Acad. Sci. USA 75, 2416–2420 (1978).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. McEver, R. P. Selectins: lectins that initiate cell adhesion under flow. Curr. Opin. Cell Biol. 14, 581–586 (2002).

    CAS  PubMed  Google Scholar 

  31. Rosen, S. D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    CAS  PubMed  Google Scholar 

  32. Rosen, S. D., Singer, M. S., Yednock, T. A. & Stoolman, L. M. Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 228, 1005–1007 (1985).

    ADS  CAS  PubMed  Google Scholar 

  33. Tyrrell, D. et al. Structural requirements for the carbohydrate ligand of E-selectin. Proc. Natl Acad. Sci. USA 88, 10372–10376 (1991).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnston, G. I., Cook, R. G. & McEver, R. P. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell 56, 1033–1044 (1989).

    CAS  PubMed  Google Scholar 

  35. Handa, K., Nudelman, E. D., Stroud, M. R., Shiozawa, T. & Hakomori, S. Selectin GMP-140 (CD62; PADGEM) binds to sialosyl-Lea and sialosyl-Lex, and sulfated glycans modulate this binding. Biochem. Biophys. Res. Commun. 181, 1223–1230 (1991).

    CAS  PubMed  Google Scholar 

  36. Moore, K. L., Varki, A. & McEver, R. P. GMP-140 binds to a glycoprotein receptor on human neutrophils: evidence for a lectin-like interaction. J. Cell Biol. 112, 491–499 (1991).

    CAS  PubMed  Google Scholar 

  37. Bevilacqua, M. et al. Selectins: a family of adhesion receptors. Cell 67, 233 (1991).

    CAS  PubMed  Google Scholar 

  38. Varki, A. Selectin ligands. Proc. Natl Acad. Sci. USA 91, 7390–7397 (1994).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawashima, H. et al. N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nature Immunol. 6, 1096–1104 (2005).

    CAS  Google Scholar 

  40. Moore, K. L. et al. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J. Cell Biol. 118, 445–456 (1992).

    CAS  PubMed  Google Scholar 

  41. Sako, D. et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75, 1179–1186 (1993).

    CAS  PubMed  Google Scholar 

  42. Wilkins, P. P., Moore, K. L., McEver, R. P. & Cummings, R. D. Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J. Biol. Chem. 270, 22677–22680 (1995).

    CAS  PubMed  Google Scholar 

  43. Sako, D. et al. A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell 83, 323–331 (1995).

    CAS  PubMed  Google Scholar 

  44. Pouyani, T. & Seed, B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell 83, 333–343 (1995).

    CAS  PubMed  Google Scholar 

  45. Leppanen, A., Yago, T., Otto, V. I., McEver, R. P. & Cummings, R. D. Model glycosulfopeptides from P-selectin glycoprotein ligand-1 require tyrosine sulfation and a core 2-branched O-glycan to bind to L-selectin. J. Biol. Chem. 278, 26391–26400 (2003).

    PubMed  Google Scholar 

  46. Lowe, J. B. & Marth, J. D. A genetic approach to mammalian glycan function. Annu. Rev. Biochem. 72, 643–691 (2003).

    CAS  PubMed  Google Scholar 

  47. Robinson, S. D. et al. Multiple, targeted deficiencies in selectins reveal a predominant role for P-selectin in leukocyte recruitment. Proc. Natl Acad. Sci. USA 96, 11452–11457 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    ADS  CAS  PubMed  Google Scholar 

  49. Norgard-Sumnicht, K. E., Varki, N. M. & Varki, A. Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells. Science 261, 480–483 (1993).

    ADS  CAS  PubMed  Google Scholar 

  50. Nelson, R. M. et al. Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 82, 3253–3258 (1993).

    CAS  PubMed  Google Scholar 

  51. Skinner, M. P. et al. Characterization of human platelet GMP-140 as a heparin-binding protein. Biochem. Biophys. Res. Commun. 164, 1373–1379 (1989).

    CAS  PubMed  Google Scholar 

  52. Koenig, A., Norgard-Sumnicht, K. E., Linhardt, R. & Varki, A. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins: implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J. Clin. Invest. 101, 877–889 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie, X. et al. Inhibition of selectin-mediated cell adhesion and prevention of acute inflammation by nonanticoagulant sulfated saccharides: studies with carboxyl-reduced and sulfated heparin and with trestatin A sulfate. J. Biol. Chem. 275, 34818–34825 (2000).

    CAS  PubMed  Google Scholar 

  54. Stevenson, J. L., Choi, S. H. & Varki, A. Differential metastasis inhibition by clinically relevant levels of heparins — correlation with selectin inhibition, not antithrombotic activity. Clin. Cancer Res. 11, 7003–7011 (2005).

    CAS  PubMed  Google Scholar 

  55. Ludwig, R. J. et al. The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on bloodborne metastasis in vivo. Thromb. Haemost. 95, 535–540 (2006).

    CAS  PubMed  Google Scholar 

  56. Varki, N. M. & Varki, A. Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Semin. Thromb. Hemost. 28, 53–66 (2002).

    CAS  PubMed  Google Scholar 

  57. Fukushima, K. et al. Characterization of sialosylated Lewisx as a new tumor-associated antigen. Cancer Res. 44, 5279–5285 (1984).

    CAS  PubMed  Google Scholar 

  58. Fukuda, M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res. 56, 2237–2244 (1996).

    CAS  PubMed  Google Scholar 

  59. Borsig, L., Wong, R., Hynes, R. O., Varki, N. M. & Varki, A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl Acad. Sci. USA 99, 2193–2198 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Laubli, H., Stevenson, J. L., Varki, A., Varki, N. M. & Borsig, L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 66, 1536–1542 (2006).

    PubMed  Google Scholar 

  61. Zacharski, L. R. & Ornstein, D. L. Heparin and cancer. Thromb. Haemost. 80, 10–23 (1998).

    CAS  PubMed  Google Scholar 

  62. Albelda, S. M., Smith, C. W. & Ward, P. A. Adhesion molecules and inflammatory injury. FASEB J. 8, 504–512 (1994).

    CAS  PubMed  Google Scholar 

  63. Crocker, P. R. et al. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J. 10, 1661–1669 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Powell, L. D., Sgroi, D., Sjoberg, E. R., Stamenkovic, I. & Varki, A. Natural ligands of the B cell adhesion molecule CD22β carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J. Biol. Chem. 268, 7019–7027 (1993).

    CAS  PubMed  Google Scholar 

  65. Crocker, P. R. et al. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J. 13, 4490–4503 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kelm, S. et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 4, 965–972 (1994).

    CAS  PubMed  Google Scholar 

  67. Angata, T. Molecular diversity and evolution of the Siglec family of cell-surface lectins. Mol. Divers. 10, 555–566 (2006).

    CAS  PubMed  Google Scholar 

  68. Crocker, P., Paulson, J. & Varki, A. Siglecs and their roles in the immune system. Nature Rev. Immunol. 7, 255–266 (2007).

    CAS  Google Scholar 

  69. Pan, B. et al. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp. Neurol. 195, 208–217 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Vyas, A. A., Blixt, O., Paulson, J. C. & Schnaar, R. L. Potent glycan inhibitors of myelin-associated glycoprotein enhance axon outgrowth in vitro. J. Biol. Chem. 280, 16305–16310 (2005).

    CAS  PubMed  Google Scholar 

  71. Jones, C., Virji, M. & Crocker, P. R. Recognition of sialylated meningococcal lipopolysaccharide by Siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol. Microbiol. 49, 1213–1225 (2003).

    CAS  PubMed  Google Scholar 

  72. Carlin, A. F., Lewis, A. L., Varki, A. & Nizet, V. Group B streptococcal capsular sialic acids interact with Siglecs (immunoglobulin-like lectins) on human leukocytes. J. Bacteriol. 89, 1231–1237 (2007).

    Google Scholar 

  73. Blasius, A. L., Cella, M., Maldonado, J., Takai, T. & Colonna, M. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107, 2474–2476 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Angata, T., Hayakawa, T., Yamanaka, M., Varki, A. & Nakamura, M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J. 20, 1964–1973 (2006).

    CAS  PubMed  Google Scholar 

  75. Yang, L. J. et al. Sialidase enhances spinal axon outgrowth in vivo. Proc. Natl Acad. Sci. USA 103, 11057–11062 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Poe, J. C. et al. CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nature Immunol. 5, 1078–1087 (2004).

    CAS  Google Scholar 

  77. Grewal, P. K. et al. ST6Gal-I restrains CD22-dependent antigen receptor endocytosis and Shp-1 recruitment in normal and pathogenic immune signaling. Mol. Cell. Biol. 26, 4970–4981 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Collins, B. E., Smith, B. A., Bengtson, P. & Paulson, J. C. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nature Immunol. 7, 199–206 (2006).

    CAS  Google Scholar 

  79. Oetke, C., Vinson, M. C., Jones, C. & Crocker, P. R. Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin m levels. Mol. Cell. Biol. 26, 1549–1557 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Razi, N. & Varki, A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc. Natl Acad. Sci. USA 95, 7469–7474 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Collins, B. E. et al. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc. Natl Acad. Sci. USA 101, 6104–6109 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kleene, R., Yang, H., Kutsche, M. & Schachner, M. The neural recognition molecule L1 is a sialic acid-binding lectin for CD24, which induces promotion and inhibition of neurite outgrowth. J. Biol. Chem. 276, 21656–21663 (2001).

    CAS  PubMed  Google Scholar 

  83. Kleene, R. & Schachner, M. Glycans and neural cell interactions. Nature Rev. Neurosci. 5, 195–208 (2004).

    CAS  Google Scholar 

  84. Banerjee, M. & Chowdhury, M. Purification and characterization of a sperm-binding glycoprotein from human endometrium. Hum. Reprod. 9, 1497–1504 (1994).

    CAS  PubMed  Google Scholar 

  85. Chatterji, U., Sen, A. K., Schauer, R. & Chowdhury, M. Paracrine effects of a uterine agglutinin are mediated via the sialic acids present in the rat uterine endometrium. Mol. Cell. Biochem. 215, 47–55 (2000).

    CAS  PubMed  Google Scholar 

  86. Varki, A. & Altheide, T. K. Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res. 15, 1746–1758 (2005).

    CAS  PubMed  Google Scholar 

  87. Velasquez, J. G. et al. Role of sialic acid in bovine sperm–zona pellucida binding. Mol. Reprod. Dev. 74, 617–628 (2006).

    Google Scholar 

  88. Michele, D. E. et al. Post-translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies. Nature 418, 417–422 (2002).

    ADS  CAS  PubMed  Google Scholar 

  89. Chiba, A. et al. Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve α-dystroglycan The role of a novel O-mannosyl-type oligosaccharide in the binding of α-dystroglycan with laminin. J. Biol. Chem. 272, 2156–2162 (1997).

    CAS  PubMed  Google Scholar 

  90. Scholler, N., Hayden-Ledbetter, M., Hellström, K. E., Hellström, I. & Ledbetter, J. A. CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J. Immunol. 166, 3865–3872 (2001).

    CAS  PubMed  Google Scholar 

  91. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl Acad. Sci. USA 101, 17033–17038 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brinkman-Van der Linden, E. C. M. et al. Loss of N-glycolylneuraminic acid in human evolution: implications for sialic acid recognition by siglecs. J. Biol. Chem. 275, 8633–8640 (2000).

    CAS  PubMed  Google Scholar 

  93. Nguyen, D. H., Hurtado-Ziola, N., Gagneux, P. & Varki, A. Loss of Siglec expression on T lymphocytes during human evolution. Proc. Natl Acad. Sci. USA 103, 7765–7770 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Patel, N. et al. OB-BP1/Siglec-6. A leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J. Biol. Chem. 274, 22729–22738 (1999).

    CAS  PubMed  Google Scholar 

  95. Sonnenburg, J. L., Altheide, T. K. & Varki, A. A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor. Glycobiology 14, 339–346 (2004).

    CAS  PubMed  Google Scholar 

  96. Hayakawa, T. et al. A human-specific gene in microglia. Science 309, 1693 (2005).

    CAS  PubMed  Google Scholar 

  97. Angata, T., Varki, N. M. & Varki, A. A second uniquely human mutation affecting sialic acid biology. J. Biol. Chem. 276, 40282–40287 (2001).

    CAS  PubMed  Google Scholar 

  98. Angata, T., Margulies, E. H., Green, E. D. & Varki, A. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc. Natl Acad. Sci. USA 101, 13251–13256 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gagneux, P. et al. Human-specific regulation of α2–6 linked sialic acids. J. Biol. Chem. 278, 48245–48250 (2003).

    CAS  PubMed  Google Scholar 

  100. Nimmerjahn, F. & Ravetch, J. V. The antiinflammatory activity of IgG: the intravenous IgG paradox. J. Exp. Med. 204, 11–15 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges comments from N. Varki and research support from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varki.

Ethics declarations

Competing interests

The author is co-founder of Noble Molecules (Boulder, Colorado), which promotes non-anticoagulant therapeutic benefits of heparins, and of Gc-Free (La Jolla, California), which focuses on detecting and eliminating Neu5Gc contamination of humans and biopharmaceutical products.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007). https://doi.org/10.1038/nature05816

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05816

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing