Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attosecond real-time observation of electron tunnelling in atoms

Abstract

Atoms exposed to intense light lose one or more electrons and become ions. In strong fields, the process is predicted to occur via tunnelling through the binding potential that is suppressed by the light field near the peaks of its oscillations. Here we report the real-time observation of this most elementary step in strong-field interactions: light-induced electron tunnelling. The process is found to deplete atomic bound states in sharp steps lasting several hundred attoseconds. This suggests a new technique, attosecond tunnelling, for probing short-lived, transient states of atoms or molecules with high temporal resolution. The utility of attosecond tunnelling is demonstrated by capturing multi-electron excitation (shake-up) and relaxation (cascaded Auger decay) processes with subfemtosecond resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strong-field ionization and pump-probe setting for its real-time observation.
Figure 2: Probing electron dynamics in atoms, molecules or solids with attosecond sampling techniques.
Figure 4: Ne 2+ ion yield versus delay between the subfemtoscond XUV pump and the few-cycle NIR probe: experiment and modelling.
Figure 3: Energy levels and transitions in Ne 1+ and Ne 2+ ions relevant to this study.
Figure 5: Energy levels and transitions in xenon ions relevant to the current study.
Figure 6: Xe 4+ and Xe 3+ ion yields versus delay between the subfemtosecond XUV pump and the few-cycle NIR probe.

Similar content being viewed by others

References

  1. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965)

    Google Scholar 

  2. Faisal, F. H. M. Multiple absorption of laser photons by atoms. J. Phys. B 6, L89–L92 (1973)

    Article  ADS  Google Scholar 

  3. Reiss, H. R. Effect of an intense electromagnetic field on a weakly bound system. Phys. Rev. A 22, 1786–1813 (1980)

    Article  ADS  CAS  Google Scholar 

  4. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Scrinzi, A., Geissler, M. & Brabec, T. Ionization above the coulomb barrier. Phys. Rev. Lett. 83, 706–709 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Yudin, G. L. & Ivanov, M. Yu. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001)

    Article  ADS  Google Scholar 

  7. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Kitzler, M., Milosevic, N., Scrinzi, A., Krausz, F. & Brabec, T. Quantum theory of attosecond XUV pulse measurement by laser-dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002)

    Article  ADS  Google Scholar 

  10. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 783–787 (2002)

    Article  ADS  Google Scholar 

  14. Svensson, S., Eriksson, B., Martensson, N., Wendin, G. & Gelius, U. Electron shake-up and correlation satellites and continuum shake-off distributions in x-ray photoelectron spectra of the rare gas atoms. J. Electron Spectrosc. Related Phenomena 47, 327–384 (1988)

    Article  CAS  Google Scholar 

  15. Aksela, H., Aksela, S. & Kabachnik, N. Resonant and nonresonant Auger recombination. In VUV and Soft X-Ray Photoionization (eds Becker, U. & Shirley, D. A.) 401–440 (Plenum, New York, 1996)

    Chapter  Google Scholar 

  16. Istomin, A. Y., Manakov, N. L. & Starace, A. F. Perturbative analysis of the triply differential cross section and circular dichroism in photo-double-ionization of He. Phys. Rev. A 69, 032713 (2004)

    Article  ADS  Google Scholar 

  17. Schröder, H., Wagner, M., Kaesdorf, S. & Kompa, K. L. Surface-analysis by laser ionization. Ber. Bunsenges. Phys. Chem. 97, 1688–1692 (1993)

    Article  Google Scholar 

  18. Wagner, M. & Schröder, H. A novel 4 grid ion reflector for saturation of laser multiphoton ionization yields in a time-of-flight mass-spectrometer. Int. J. Mass Spectrom. 128, 31–45 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Witzel, B., Schröder, H., Kaesdorf, S. & Kompa, K. L. Exact determination of spatially resolved ion concentrations in focused laser beams. Int. J. Mass Spectrom. 172, 229–238 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Larkins, F. P. Charge state dependence of x-ray and Auger electron emission spectra for rare-gas atoms—II. The neon atom. J. Phys. B 4, 14–19 (1971)

    Article  ADS  CAS  Google Scholar 

  21. National Institute of Standards and Technology Physical Reference Datahttp://physics.nist.gov/PhysRefData/〉 (1994)

  22. Holland, D. M. P., Codling, K., West, J. B. & Marr, G. V. Multiple photoionization in the rare gases from threshold to 280 eV. J. Phys. B 12, 2465–2484 (1979)

    Article  ADS  CAS  Google Scholar 

  23. Becker, U. & Shirley, D. A. Partial Cross Sections and Angular Distributions. In VUV and Soft X-Ray Photoionization (eds Becker, U. & Shirley, D. A.) 135–173 (Plenum, New York, 1996)

    Chapter  Google Scholar 

  24. Smirnova, O., Spanner, M. & Ivanov, M. Y. Coulomb and polarization effects in laser-assisted XUV ionization. J. Phys. B 39, 323–339 (2006)

    Article  ADS  Google Scholar 

  25. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Kämmerling, B., Krässig, B. & Schmidt, V. Direct measurement for the decay probabilities of 4dj hole states in xenon by means of photoelectron-ion coincidences. J. Phys. B 25, 3621–3629 (1992)

    Article  ADS  Google Scholar 

  27. Penent, F., Palaudoux, J., Lablanquie, P. & Andric, L. Multielectron spectroscopy: the xenon 4d hole double Auger decay. Phys. Rev. Lett. 95, 083002 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Lablanquie, P. et al. Photoemission of threshold electrons in the vicinity of the xenon 4d hole: dynamics of Auger decay. J. Phys. B 35, 3265–3295 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Hayaishi, T. et al. Manifestation of Kr 3d and Xe 4d conjugate shake-up satellites in threshold-electron spectra. Phys. Rev. A. 44, R2771–R2774 (1991)

    Article  ADS  CAS  Google Scholar 

  30. Becker, U. et al. Subshell photoionization of Xe between 40 and 1000 eV. Phys. Rev. A 39, 3902–3911 (1989)

    Article  ADS  CAS  Google Scholar 

  31. Viefhaus, J. et al. Auger cascades versus direct double Auger: relaxation processes following photoionization of the Kr 3d and Xe 4d, 3d inner shells. J. Phys. B 38, 3885–3903 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. F. Starace for discussions. We are grateful for financial support from the Volkswagenstiftung (Germany), the Marie Curie Research Training Network XTRA, Laserlab Europe, and a Marie Curie Intra-European Fellowship. F.K. acknowledges support from the FWF (Austria). The research of M.F.K. and M.J.J.V. is part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie, which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek. This research was supported by the cluster of excellence Munich Centre for Advanced Photonics (http://www.munich-photonics.de).

Author Contributions M.U., Th.U., M.S. and A.J.V. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Uiberacker or F. Krausz.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion, Supplementary Figures 1-11 with Legends, Supplementary Table 1 and additional references. The Supplementary Information concerns Setup, Data analysis and Simulations (PDF 930 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uiberacker, M., Uphues, T., Schultze, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007). https://doi.org/10.1038/nature05648

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05648

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing