Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seismic evidence for convection-driven motion of the North American plate

Abstract

Since the discovery of plate tectonics, the relative importance of driving forces of plate motion has been debated1,2. Resolution of this issue has been hindered by uncertainties in estimates of basal traction, which controls the coupling between lithospheric plates and underlying mantle convection2,3,4. Hotspot tracks preserve records of past plate motion5 and provide markers with which the relative motion between a plate’s surface and underlying mantle regions may be examined. Here we show that the 115–140-Myr surface expression of the Great Meteor hotspot track in eastern North America is misaligned with respect to its location at 200 km depth, as inferred from plate-reconstruction models and seismic tomographic studies6. The misalignment increases with age and is consistent with westward displacement of the base of the plate relative to its surface, at an average rate of 3.8 ± 1.8 mm yr-1. Here age-constrained ‘piercing points’ have enabled direct estimation of relative motion between the surface and underside of a plate. The relative displacement of the base is approximately parallel to seismic fast axes and calculated mantle flow7, suggesting that asthenospheric flow may be deforming the lithospheric keel and exerting a driving force on this part of the North American plate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing near-surface manifestations of a hotspot and shear sense from different polarities of basal traction.
Figure 2: Inferred track of the Great Meteor hotspot.
Figure 3: Modelled evolution of the thermal anomaly from a hotspot.

References

  1. Forsyth, D. & Uyeda, S. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astron. Soc. 43, 163–200 (1975)

    Article  ADS  Google Scholar 

  2. Bokelmann, G. H. R. Which forces drive North America?. Geology 30, 1027–1030 (2002)

    Article  ADS  Google Scholar 

  3. Bokelmann, G. H. R. & Silver, P. Shear stress at the base of shield lithosphere. Geophys. Res. Lett. 29 doi: 10.1029/2002GL015925 (2002)

  4. Conrad, C. P. & Lithgow-Bertelloni, C. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophys. Res. Lett. 33 doi: 10.1029/2005GL025621 (2006)

  5. Duncan, R. A. & Richards, M. A. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys. 29, 31–50 (1991)

    Article  ADS  Google Scholar 

  6. Van der Lee, S. & Frederiksen, A. in Seismic Data Analysis and Imaging With Global and Local Arrays (eds Nolet, G. & Levander, A.) 67–80 (AGU Geophysical Monograph 157, Washington DC, 2005)

    Google Scholar 

  7. Conrad, C. P. & Lithgow-Bertelloni, C. Iceland, the Farallon slab, and dynamic topography of the North Atlantic. Geology 32, 177–180 (2004)

    Article  ADS  Google Scholar 

  8. Lithgow-Bertelloni, C. L. & Richards, M. A. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78 (1998)

    Article  ADS  Google Scholar 

  9. Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Silver, P. G. & Holt, W. E. The mantle flow field beneath western North America. Science 295, 1054–1057 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Jordan, T. H. The continental tectosphere. Rev. Geophys. 13, 1–12 (1975)

    Article  ADS  Google Scholar 

  12. Bokelmann, G. H. R. Convection-driven motion of the North American craton: Evidence from P-wave anisotropy. Geophys. J. Int. 148, 278–287 (2002)

    ADS  Google Scholar 

  13. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Crough, S. T. Mesozoic hotspot epeirogeny in eastern North America. Geology 9, 2–6 (1981)

    Article  ADS  Google Scholar 

  15. Morgan, W. J. Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94, 123–139 (1983)

    Article  ADS  Google Scholar 

  16. Sleep, N. H. Monteregian hotspot track: A long-lived mantle plume. J. Geophys. Res. 95, 21983–21990 (1990)

    Article  ADS  Google Scholar 

  17. Heaman, L. M. & Kjarsgaard, B. A. Timing of eastern North American kimberlite magmatism: continental extension of the Great Meteor hotspot track?. Earth Planet. Sci. Lett. 178, 253–268 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Adams, J. & Basham, P. in Neotectonics of North America (eds Slemmons, D. B., Engdahl, E. R., Zoback, M. D. & Blackwell, D. D.) 261–276 (Geological Society of America, Boulder, Colorado, 1991)

    Google Scholar 

  19. Darbyshire, F. A., Eaton, D. W., Frederiksen, A. W. & Ertolahti, L. New insights into the lithosphere of the Superior Province from Rayleigh wave dispersion and receiver function analysis. Geophys. J. Int. (in the press).

  20. Fouch, M. J., Fischer, K. M., Parmentier, E. M., Wysession, M. E. & Clarke, T. J. Shear wave splitting, continental keels, and patterns of mantle flow. J. Geophys. Res. 105, 6255–6275 (2000)

    Article  ADS  Google Scholar 

  21. Artemieva, I. M., Magali, B., Leveque, J.-J. & Mooney, W. D. Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle. Geophys. J. Int. 157, 607–628 (2004)

    Article  ADS  Google Scholar 

  22. Mareschal, J.-C. et al. Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield. Can. J. Earth Sci. 37, 399–414 (2000)

    Article  ADS  Google Scholar 

  23. VanDecar, J. C., James, D. E. & Assumpção, M. Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces. Nature 378, 25–31 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Schettino, A. & Scotese, C. R. Apparent polar wander paths for the major continents (200 Ma to the present day): A palaeomagnetic reference frame for global plate tectonic reconstructions. Geophys. J. Int. 163, 727–759 (2005)

    Article  ADS  Google Scholar 

  25. Sleep, N. H., Ebinger, C. J. & Kendall, J.-M. in The Early Earth: Physical, Chemical and Biological Development (eds Fowler, C. M. R., Ebinger, C. J. & Hawkesworth, C. J.) 135–150 (GSL Special Publication 199, Geological Society of London, London, 2002)

    Google Scholar 

  26. Tarduno, J. A. & Gee, J. Large-scale motion between Pacific and Atlantic hotspots. Nature 378, 477–480 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Eby, G. N. Geochronology of the Monteregian Hills alkaline igneous province, Quebec. Geology 12, 468–470 (1984)

    Article  ADS  CAS  Google Scholar 

  28. Aktas, K. & Eaton, D. W. Upper-mantle velocity structure of the lower Great Lakes region. Tectonophysics 420, 267–281 (2006)

    Article  ADS  Google Scholar 

  29. Eaton, D. W., Frederiksen, A. & Miong, S.-Y. Shear-wave splitting observations in the lower Great Lakes region: Evidence for regional anisotropic domains and keel-modified asthenospheric flow. Geophys. Res. Lett. 31 L07610 doi: 10.1029/2004GL019438 (2004)

    Article  ADS  Google Scholar 

  30. Zartman, R. E. Geochronology of some alkaline rock provinces in eastern and central United States. Annu. Rev. Earth Planet. Sci. 5, 257–286 (1977)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSERC Discovery grants and benefited from discussions with J. Adams, D. Moser, P. McCausland, D. Jiang and F. Darbyshire. A review by M. Savage improved the clarity of this manuscript.

Author Contributions D.W.E. performed thermal modelling and data analysis; A.F. provided seismic tomography results and interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Eaton.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, D., Frederiksen, A. Seismic evidence for convection-driven motion of the North American plate. Nature 446, 428–431 (2007). https://doi.org/10.1038/nature05675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05675

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing