Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors

Abstract

The Drosophila melanogaster lymph gland is a haematopoietic organ1,2,3 in which pluripotent blood cell progenitors proliferate and mature into differentiated haemocytes. Previous work4 has defined three domains, the medullary zone, the cortical zone and the posterior signalling centre (PSC), within the developing third-instar lymph gland. The medullary zone is populated by a core of undifferentiated, slowly cycling progenitor cells, whereas mature haemocytes comprising plasmatocytes, crystal cells and lamellocytes are peripherally located in the cortical zone. The PSC comprises a third region that was first defined as a small group of cells expressing the Notch ligand Serrate5. Here we show that the PSC is specified early in the embryo by the homeotic gene Antennapedia (Antp) and expresses the signalling molecule Hedgehog. In the absence of the PSC or the Hedgehog signal, the precursor population of the medullary zone is lost because cells differentiate prematurely. We conclude that the PSC functions as a haematopoietic niche that is essential for the maintenance of blood cell precursors in Drosophila. Identification of this system allows the opportunity for genetic manipulation and direct in vivo imaging of a haematopoietic niche interacting with blood precursors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Embryonic specification of the PSC by Antp.
Figure 2: The larval PSC functions as a haematopoietic niche to maintain blood precursors in the medullary zone.
Figure 3: A Hedgehog signal from the PSC is required for the maintenance of the precursor cell population of the medullary zone.
Figure 4: PSC cells exhibit extensive processes that project into the lymph gland.

Similar content being viewed by others

References

  1. Rizki, T. M. The circulatory system and associated cells and tissues. In The Genetics and Biology of Drosophila (eds Ashburner, M. and Wright, T. R. F.) 397–452 (Academic Press, London, 1978)

    Google Scholar 

  2. el Shatoury, H. H. The structure of the lymph gland of Drosophila larvae. Roux Arch. EntwMech. Organ. 147, 489–495 (1955)

    Article  CAS  Google Scholar 

  3. Evans, C. J. Hartenstein, V. & Banerjee, U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673–690 (2003)

    Article  CAS  Google Scholar 

  4. Jung, S. H., Evans, C. J., Uemura, C. & Banerjee, U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521–2533 (2005)

    Article  CAS  Google Scholar 

  5. Lebestky, T., Jung, S. H. & Banerjee, U. A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17, 348–353 (2003)

    Article  CAS  Google Scholar 

  6. Mandal, L., Banerjee, U. & Hartenstein, V. Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nature Genet. 36, 1019–1023 (2004)

    Article  CAS  Google Scholar 

  7. Lo, P. C., Skeath, J. B., Gajewski, K., Schulz, R. A. & Frasch, M. Homeotic genes autonomously specify the anteroposterior subdivision of the Drosophila dorsal vessel into aorta and heart. Dev. Biol. 251, 307–319 (2002)

    Article  CAS  Google Scholar 

  8. Ryan, K. M., Hoshizaki, D. K. & Cripps, R. M. Homeotic selector genes control the patterning of seven-up expressing cells in the Drosophila dorsal vessel. Mech. Dev. 122, 1023–1033 (2005)

    Article  CAS  Google Scholar 

  9. Crozatier, M., Ubeda, J. M., Vincent, A. & Meister, M. Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol. 8, E196 (2004)

    Article  Google Scholar 

  10. Casares, F. & Mann, R. S. The ground state of the ventral appendage in Drosophila. Science 293, 1477–1480 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Hisa, T. et al. Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J 23, 450–459 (2004)

    Article  CAS  Google Scholar 

  12. Azcoitia, V., Aracil, M., Martinez, A. C. & Torres, M. The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev. Biol. 280, 307–320 (2005)

    Article  CAS  Google Scholar 

  13. Schnabel, C. A., Jacobs, Y. & Cleary, M. L. HoxA9-mediated immortalization of myeloid progenitors requires functional interactions with TALE cofactors Pbx and Meis. Oncogene 19, 608–616 (2000)

    Article  CAS  Google Scholar 

  14. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Song, X., Zhu, C. H., Doan, C. & Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296, 1855–1857 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Kimble, J. & Crittenden, S. L. Germline proliferation and its control. In WormBook (eds The C. elegans Research Community), doi/10.1895/wormbook.1.13.1 (15 August, 2005)

    Google Scholar 

  17. Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature 414, 98–104 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Yamashita, Y. M., Fuller, M. T. & Jones, D. L. Signaling in stem cell niches: lessons from the Drosophila germline. J. Cell Sci. 118, 665–672 (2005)

    Article  CAS  Google Scholar 

  21. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Abbott, M. K. & Kauffman, T. C. The relationship between the functional complexity and the molecular organization of Antennapedia locus of Drosophila melanogaster. Genetics 114, 919–942 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Chuang, P. T. & Kornberg, T. B. On the range of hh signaling. Curr. Opin. Genet. Dev. 10, 515–522 (2002)

    Article  Google Scholar 

  25. Crittenden, S. L., Leonhard, K. A., Byrd, D. T. & Kimble, J. Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol. Biol. Cell 17, 3051–3061 (2006)

    Article  CAS  Google Scholar 

  26. Abramovich, C. & Humphries, R. K. Hox regulation of normal and leukemic hematopoietic stem cells. Curr. Opin. Hematol. 12, 210–216 (2005)

    Article  CAS  Google Scholar 

  27. Kieusseian, A. et al. Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood 107, 492–500 (2006)

    Article  CAS  Google Scholar 

  28. Zhang, Y. & Kalderon, D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410, 599–604 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Gering, M. & Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell 8, 389–400 (2005)

    Article  CAS  Google Scholar 

  30. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol. 2, 172–180 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Cripps for drawing our attention to Antennapedia expression in the developing cardiogenic mesoderm. We thank M. Crozatier, M. Meister and A. Vincent for useful discussions. We thank all members of the Banerjee and Hartenstein laboratories for their helpful comments and suggestions. In particular, we thank S. A. Sinenko for assistance with immunohistochemistry and S.-H. Jung for her initial experiments on Hedgehog. We appreciate the help of all those who provided us with reagents: W. Gehring, S. M. Cohen, L. Cooley, K. Moses, M. Crozatier, S. Noselli, A. Salzberg, H. Müller, I. Ando, K. Basler and R. Holmgren. This work was supported by an NIH grant to U.B. and V.H., and by NIH training grant support to J.A.M.-A. and C.J.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Banerjee.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, L., Martinez-Agosto, J., Evans, C. et al. A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320–324 (2007). https://doi.org/10.1038/nature05585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05585

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing