Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adaptive subwavelength control of nano-optical fields

Abstract

Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems1,2,3,4,5,6,7,8,9,10. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated11,12 that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion13. Shaping of the polarization of the laser pulse14,15 provides a particularly efficient and versatile nano-optical manipulation method16,17. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses14,15 and then probing the lateral field distribution by two-photon photoemission electron microscopy18. In this combination of adaptive control1,2,3,4,5,6,7,8,9,10 and nano-optics19, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions11,12,13,16,17,20 opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme.
Figure 2: Nanoscopic field control.

Similar content being viewed by others

References

  1. Judson, R. S. & Rabitz, H. Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500–1503 (1992)

    Article  ADS  CAS  Google Scholar 

  2. Assion, A. et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Weinacht, T. C., Ahn, J. & Bucksbaum, P. H. Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Brixner, T., Damrauer, N. H., Niklaus, P. & Gerber, G. Photoselective adaptive femtosecond quantum control in the liquid phase. Nature 414, 57–60 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Herek, J. L., Wohlleben, W., Cogdell, R. J., Zeidler, D. & Motzkus, M. Quantum control of energy flow in light harvesting. Nature 417, 533–535 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Feurer, T., Vaughan, J. C. & Nelson, K. A. Spatiotemporal coherent control of lattice vibrational waves. Science 299, 374–377 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Shapiro, M. & Brumer, P. Principles of the Quantum Control of Molecular Processes (Wiley-Interscience, Hoboken, NJ, 2003)

    MATH  Google Scholar 

  10. Brixner, T. & Gerber, G. Quantum control of gas-phase and liquid-phase femtochemistry. ChemPhysChem 4, 418–438 (2003)

    Article  CAS  Google Scholar 

  11. Stockman, M. I., Faleev, S. V. & Bergman, D. J. Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 88, 067402 (2002)

    Article  ADS  Google Scholar 

  12. Stockman, M. I., Bergman, D. J. & Kobayashi, T. Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems. Phys. Rev. B 69, 054202 (2004)

    Article  ADS  Google Scholar 

  13. Brixner, T., García de Abajo, F. J., Schneider, J. & Pfeiffer, W. Nanoscopic ultrafast space-time-resolved spectroscopy. Phys. Rev. Lett. 95, 093901 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Brixner, T. & Gerber, G. Femtosecond polarization pulse shaping. Opt. Lett. 26, 557–559 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Brixner, T., Krampert, G., Niklaus, P. & Gerber, G. Generation and characterization of polarization-shaped femtosecond laser pulses. Appl. Phys. B 74, S133–S144 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Brixner, T., García de Abajo, F. J., Schneider, J., Spindler, C. & Pfeiffer, W. Ultrafast adaptive optical near-field control. Phys. Rev. B 73, 125437 (2006)

    Article  ADS  Google Scholar 

  17. Brixner, T., García de Abajo, F. J., Spindler, C. & Pfeiffer, W. Adaptive ultrafast nano-optics in a tight focus. Appl. Phys. B 84, 89–95 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Schmidt, O. et al. Time-resolved two photon photoemission electron microscopy. Appl. Phys. B 74, 223–227 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, UK, 2006)

    Book  Google Scholar 

  20. Sukharev, M. & Seideman, T. Phase and polarization control as a route to plasmonic nanodevices. Nano Lett. 6, 715–719 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Brixner, T. Poincaré representation of polarization-shaped femtosecond laser pulses. Appl. Phys. B 76, 531–540 (2003)

    Article  ADS  CAS  Google Scholar 

  23. García de Abajo, F. J. & Howie, A. Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys. Rev. Lett. 80, 5180–5183 (1998)

    Article  ADS  Google Scholar 

  24. García de Abajo, F. J. & Howie, A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002)

    Article  ADS  Google Scholar 

  25. Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Sánchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999)

    Article  ADS  Google Scholar 

  27. Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Baumert, T., Brixner, T., Seyfried, V., Strehle, M. & Gerber, G. Femtosecond pulse shaping by an evolutionary algorithm with feedback. Appl. Phys. B 65, 779–782 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Swiech, W. et al. Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity. J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997)

    Article  CAS  Google Scholar 

  30. Cinchetti, M. et al. Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys. Rev. Lett. 95, 047601 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Fechner and G. Krampert for constructing the improved pulse shaper, and the Nano-Bio Center at the University of Kaiserslautern for support in the preparation of the nanostructures. This work was supported by the German Science Foundation (DFG) within an Emmy Noether research group (T.B.), by the Graduiertenkolleg 792 (F.S.), and by the Spanish MEC (F.J.G.A.). Author Contributions The principal investigators of this work are M.B., T.B., F.J.G.A. and W.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Brixner.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures S1-S4 with Legends. The Supplementary Figures illustrate the alignment of the two-photon photoemission pattern with respect to the nanostructure, the quantitative pulse characteristics of the optimal polarisation-shaped laser pulses, the contrast variation for single-parameter pulse shaping and the robustness of adaptive optimisation. (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aeschlimann, M., Bauer, M., Bayer, D. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007). https://doi.org/10.1038/nature05595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05595

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing