Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Continental ice in Greenland during the Eocene and Oligocene

This article has been updated

Abstract

The Eocene and Oligocene epochs (55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records1,2,3,4,5 supported by climate modelling6 indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy3,7,8,9. Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian–Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented10, at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eocene–Oligocene palaeoclimate records and location of site 913.
Figure 2: Data from ODP site 913, Greenland Basin.
Figure 3: Representative images of dropstones and quartz grains.

Similar content being viewed by others

Change history

  • 08 March 2007

    In the AOP version of this Letter, the x-axis of Fig. 2c incorrectly read: 0, 10, 20. This figure and the corresponding Supplementary Information spreadsheet for Fig. 2 have now been corrected for both print and online publication on 8 March 2007. The mistake did not affect any results.

References

  1. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Pekar, S. E., Hucks, A., Fuller, M. & Li, S. Glacioeustatic changes in early and middle Eocene (51–42 Ma): shallow-water stratigraphy from ODP Leg 189 Site 1171 (South Tasman Rise) and deep-sea δ18O records. Bull. Geol. Soc. Am. 117, 1081–1093 (2005)

    Article  Google Scholar 

  5. Strand, K., Passchier, S. & Näsi, J. Implications of quartz grain microtextures for onset of Eocene/Oligocene glaciation in Prydz Bay, ODP Site 1166, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 101–111 (2003)

    Article  Google Scholar 

  6. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Wolf-Welling, T. C. W., Cremer, M., O'Connell, S., Winkler, A. & Thiede, J. Cenozoic Arctic gateway paleoclimate variability: indications from changes in coarse-fraction composition (ODP Leg 151). In Proc. ODP Sci. Res. (eds Thiede, J., Myhre, A.M. & Firth, J.V.) 151, 515–567 (ODP, College Station, Texas, 1996)

    Google Scholar 

  9. Moran, K. et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441, 601–605 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Winkler, A., Wolf-Welling, T. C. W., Stattegger, K. & Thiede, J. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG). Int. J. Earth Sci. 91, 133–148 (2002)

    Article  CAS  Google Scholar 

  11. Helland, P. E. & Holmes, M. A. Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 135, 109–121 (1997)

    Article  Google Scholar 

  12. Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the icehouse: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. 96, 6829–6849 (1991)

    Article  ADS  Google Scholar 

  13. Eldrett, J. S., Harding, I. C., Firth, J. V. & Roberts, A. P. Magnetostratigraphic calibration of Eocene-Oligocene dinoflagellate cyst biostratigraphy from the Norwegian-Greenland Sea. Mar. Geol. 204, 91–127 (2004)

    Article  ADS  Google Scholar 

  14. Myhre, A. M. et al. Site 913. Proc. ODP Init. Rep. 151, 345–382 (1995)

    Google Scholar 

  15. Krinsley, D. H. & Doornkamp, J. C. Atlas of Quartz Sand Surface Textures (Cambridge Univ. Press, Cambridge, UK, 1973)

    Google Scholar 

  16. Clark, D. L. & Hanson, A. in Glacial-Marine Sedimentation (ed. Molnia, B. F.) 301–330 (Plenum, New York, 1983)

    Book  Google Scholar 

  17. Nürnberg, D. et al. Sediments in Arctic ice: implications for entrainment, transport and release. Mar. Geol. 119, 185–214 (1994)

    Article  ADS  Google Scholar 

  18. Margolis, S. V. & Kennett, J. P. Cenozoic paleoglacial history of Antarctica recorded in subantarctic deep-sea cores. Am. J. Sci. 271, 1–36 (1971)

    Article  ADS  Google Scholar 

  19. Bond, G. et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245–249 (1992)

    Article  ADS  Google Scholar 

  20. Richter, T. O., Lassen, S., van Weering, T. C. E. & de Haas, H. Magnetic susceptibility patterns and provenance of ice-rafted material at Feni Drift, Rockall Trough: implications for the history of the British-Irish ice sheet. Mar. Geol. 173, 37–54 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Karlin, R. & Levi, S. Diagenesis of magnetic minerals in recent hemipelagic sediments. Nature 303, 327–330 (1983)

    Article  ADS  CAS  Google Scholar 

  22. Hinrichs, J., Schnetger, B., Schale, H. & Brumsack, H.-J. A high resolution study of NE Atlantic sediments at station Bengal: geochemistry and early diagenesis of Heinrich layers. Mar. Geol. 177, 72–92 (2001)

    Article  ADS  Google Scholar 

  23. Upton, B. G. J., Emeleus, C. H. & Beckinsale, R. D. Petrology of the Northern East Greenland Tertiary flood basalts: evidence from Hold with Hope and Wollaston Forland. J. Petrol. 25, 151–184 (1984)

    Article  ADS  CAS  Google Scholar 

  24. Firth, J. V. Upper middle Eocene to Oligocene dinoflagellate biostratigraphy and assemblage variations in Hole 913B, Greenland Sea. Proc. ODP Sci. Res. 151, 203–242 (1996)

    Google Scholar 

  25. Larsen, M., Heilmann-Clausen, C., Piasecki, S. & Stemmerik, L. in Petroleum Geology: North-West Europe and global perspectives—Proceedings of the 6th Petroleum Geology Conference (eds Doré, A. G. & Vinning, B. A.) 923–932 (The Geological Society, London, 2004)

    Google Scholar 

  26. Soper, N. J., Higgins, A. C., Downie, C., Matthews, D. W. & Brown, P. E. Late Cretaceous-early Tertiary stratigraphy of the Kangerdlugssuaq area, east Greenland, and the age of the opening of the north-east Atlantic. J. Geol. Soc. Lond. 132, 85–104 (1976)

    Article  Google Scholar 

  27. Harland, W. B. in The Geology of Svalbard (ed. Harland, W. B.) Geol. Soc. Mem. 17, 363–387 (The Geological Society Publishing House, Bath, UK, 1997).

    Google Scholar 

  28. Deconto, R. M. & Pollard, D. Rethinking the Cenozoic record of ice volume: a modeling perspective on the relative contributions of Southern and Northern Hemispheres. AGU Fall Meet. 2005 [CD] abstr. #PP52B–01 (American Geophysical Union, 2005); 〈http://www.agu.org/〉.

  29. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–602 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Lyle, A. O. & Lyle, M. Determination of biogenic opal in pelagic marine sediments: a simple method revisited. Proc. ODP Init. Rep. 199, 1–21 (2002)

    Google Scholar 

Download references

Acknowledgements

This research used samples provided by the Ocean Drilling Program (ODP). ODP was sponsored by the US National Science Foundation (NSF) and participating countries under management of the Joint Oceanographic Institutions (JOI, Inc.). We thank W. Hale and J. Firth for assistance with core examination and photography; S. Akbari, M. Houston and R. Helsby for sample preparation, Ichron for use of their XRF machine, B. Marsh for specimen photography and K. Davis for drafting the map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Harding.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Data

This file contains Supplementary Data. (XLS 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldrett, J., Harding, I., Wilson, P. et al. Continental ice in Greenland during the Eocene and Oligocene. Nature 446, 176–179 (2007). https://doi.org/10.1038/nature05591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05591

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing