Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum

Abstract

The origin of all mitochondria can be traced to the symbiotic arrangement that resulted in the emergence of eukaryotes in a world that was exclusively populated by prokaryotes1,2,3. This arrangement, however, has been in continuous genetic flux: the varying degrees of gene loss and transfer from the mitochondrial genome in different eukaryotic lineages seem to signify an ongoing ‘conflict’ between the host and the symbiont. Eukaryotic parasites belonging to the phylum Apicomplexa provide an excellent example to support this view. These organisms contain the smallest mitochondrial genomes known4,5, with an organization that differs among various genera; one genus, Cryptosporidium, seems to have lost the entire mitochondrial genome6,7. Here we show that erythrocytic stages of the human malaria parasite Plasmodium falciparum seem to maintain an active mitochondrial electron transport chain to serve just one metabolic function: regeneration of ubiquinone required as the electron acceptor for dihydroorotate dehydrogenase, an essential enzyme for pyrimidine biosynthesis. Transgenic P. falciparum parasites expressing Saccharomyces cerevisiae dihydroorotate dehydrogenase, which does not require ubiquinone as an electron acceptor8, were completely resistant to inhibitors of mitochondrial electron transport. Maintenance of mitochondrial membrane potential, however, was essential in these parasites, as indicated by their hypersensitivity to proguanil, a drug that collapsed the membrane potential in the presence of electron transport inhibitors. Thus, acquisition of just one enzyme can render mitochondrial electron transport nonessential in erythrocytic stages of P. falciparum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transgenic P. falciparum expressing S. cerevisiae DHOD.
Figure 2: Transgenic parasites are resistant to atovaquone.
Figure 3: Extreme hypersensitivity of the transgenic parasites to atovaquone/proguanil combination.

Similar content being viewed by others

References

  1. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Lane, N. Power, Sex, Suicide: Mitochondria and the Meaning of Life (Oxford Univ. Press, New York, 2005)

    Google Scholar 

  4. Vaidya, A. B. & Arasu, P. Tandemly arranged gene clusters of malarial parasites that are highly conserved and transcribed. Mol. Biochem. Parasitol. 22, 249–257 (1987)

    Article  CAS  Google Scholar 

  5. Vaidya, A. B., Akella, R. & Suplick, K. Sequences similar to genes for two mitochondrial proteins and portions of ribosomal RNA in tandemly arrayed 6-kilobase-pair DNA of a malarial parasite. Mol. Biochem. Parasitol. 35, 97–107 (1989)

    Article  CAS  Google Scholar 

  6. Xu, P. et al. The genome of Cryptosporidium hominis. Nature 431, 1107–1112 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Abrahamsen, M. S. et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441–445 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Nagy, M., Lacroute, F. & Thomas, D. Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Proc. Natl Acad. Sci. USA 89, 8966–8970 (1992)

    Article  ADS  CAS  Google Scholar 

  9. Wilson, R. J. & Williamson, D. H. Extrachromosomal DNA in the Apicomplexa. Microbiol. Mol. Biol. Rev. 61, 1–16 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson, R. J. Progress with parasite plastids. J. Mol. Biol. 319, 257–274 (2002)

    Article  CAS  Google Scholar 

  11. Vaidya, A. B., Lashgari, M. S., Pologe, L. G. & Morrisey, J. Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol. Biochem. Parasitol. 58, 33–42 (1993)

    Article  CAS  Google Scholar 

  12. Fry, M., Webb, E. & Pudney, M. Effect of mitochondrial inhibitors on adenosinetriphosphate levels in Plasmodium falciparum. Comp. Biochem. Physiol. B 96, 775–782 (1990)

    Article  CAS  Google Scholar 

  13. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Vaidya, A. B. & Mather, M. W. A. Post-genomic view of the mitochondrion in malaria parasites. Curr. Top. Microbiol. Immunol. 295, 233–250 (2005)

    CAS  PubMed  Google Scholar 

  15. Fry, M. & Pudney, M. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4'-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem. Pharmacol. 43, 1545–1553 (1992)

    Article  CAS  Google Scholar 

  16. Vaidya, A. B. in Malaria: Parasite biology, Pathogenesis, and Protection (ed. Sherman, I. W.) 355–368 (ASM Press, Washington DC, 1998)

    Google Scholar 

  17. Gutteridge, W. E., Dave, D. & Richards, W. H. Conversion of dihydroorotate to orotate in parasitic protozoa. Biochim. Biophys. Acta 582, 390–401 (1979)

    Article  CAS  Google Scholar 

  18. Gojkovic, Z. et al. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol. Genet. Genomics 271, 387–393 (2004)

    Article  CAS  Google Scholar 

  19. O'Donnell, R. A. et al. A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. EMBO J. 21, 1231–1239 (2002)

    Article  CAS  Google Scholar 

  20. Vaidya, A. B. & Mather, M. W. Atovaquone resistance in malaria parasites. Drug Resist. Updat. 3, 283–287 (2000)

    Article  CAS  Google Scholar 

  21. Baldwin, J. et al. High-throughput screening for potent and selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J. Biol. Chem. 280, 21847–21853 (2005)

    Article  CAS  Google Scholar 

  22. Srivastava, I. K. & Vaidya, A. B. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob. Agents Chemother. 43, 1334–1339 (1999)

    Article  CAS  Google Scholar 

  23. Nicholls, D. G. & Ferguson, S. J. Bioenergetics 3 (Academic Press, London, 2002)

    Google Scholar 

  24. Allen, R. J. & Kirk, K. The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum. J. Biol. Chem. 279, 11264–11272 (2004)

    Article  CAS  Google Scholar 

  25. Striepen, B. et al. Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc. Natl Acad. Sci. USA 101, 3154–3159 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Keithly, J. S., Langreth, S. G., Buttle, K. F. & Mannella, C. A. Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J. Eukaryot. Microbiol. 52, 132–140 (2005)

    Article  Google Scholar 

  27. Lill, R. & Muhlenhoff, U. Iron–sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 30, 133–141 (2005)

    Article  CAS  Google Scholar 

  28. Giraud, M. F. & Velours, J. The absence of the mitochondrial ATP synthase delta subunit promotes a slow growth phenotype of rho- yeast cells by a lack of assembly of the catalytic sector F1 . Eur. J. Biochem. 245, 813–818 (1997)

    Article  CAS  Google Scholar 

  29. Schnaufer, A., Clark-Walker, G. D., Steinberg, A. G. & Stuart, K. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 24, 4029–4040 (2005)

    Article  CAS  Google Scholar 

  30. van der Giezen, M. & Tovar, J. Degenerate mitochondria. EMBO Rep. 6, 525–530 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues within the Center for Molecular Parasitology, especially J. Burns and B. Bergman, for discussions, advice, and general cheer; K. Henry for providing yeast strains; and B. A. Palfey (University of Michigan) for communicating that the Type 1A DHOD is not inhibited by proguanil. This work was supported by grants from the National Institute of Allergy and Infectious Diseases to A.B.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil B. Vaidya.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S4 with Legends, Supplementary Methods, and additional references. (PDF 547 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Painter, H., Morrisey, J., Mather, M. et al. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446, 88–91 (2007). https://doi.org/10.1038/nature05572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05572

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing