Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD38 is critical for social behaviour by regulating oxytocin secretion

Abstract

CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nurturing behaviour is impaired in CD38 -/- mothers.
Figure 2: Social recognition deficit in CD38 -/- male mice.
Figure 3: Oxytocin and vasopressin concentrations.
Figure 4: Oxytocin secretion and calcium signalling.

Similar content being viewed by others

References

  1. Lee, H. C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu. Rev. Pharmacol. Toxicol. 41, 317–345 (2001)

    Article  Google Scholar 

  2. Deaglio, S., Vaisitti, T., Aydin, S., Ferrero, E. & Malavasi, F. In-tandem insight from basic science combined with clinical research: CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood 108, 1135–1144 (2006)

    Article  CAS  Google Scholar 

  3. Hunt, P. W. et al. The independent effect of drug resistance on T cell activation in HIV infection. AIDS 20, 691–699 (2006)

    Article  Google Scholar 

  4. Higashida, H. et al. Cyclic ADP-ribose as a second messenger revisited from a new aspect of signal transduction from receptors to ADP-ribosyl cyclase. Pharmacol. Ther. 90, 283–296 (2001)

    Article  CAS  Google Scholar 

  5. Okamoto, H. & Takasawa, S. Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in beta-cells. Diabetes 51, S462–S473 (2002)

    Article  CAS  Google Scholar 

  6. Takasawa, S. et al. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 268, 26052–26054 (1993)

    CAS  PubMed  Google Scholar 

  7. Howard, M. et al. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262, 1056–1059 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Lee, H. C. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J. Biol. Chem. 280, 33693–33696 (2005)

    Article  CAS  Google Scholar 

  9. Yamasaki, M. et al. Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and beta cells. J. Biol. Chem. 279, 7234–7240 (2004)

    Article  CAS  Google Scholar 

  10. Gerasimenko, J. V., Sherwood, M., Tepikin, A. V., Petersen, O. H. & Gerasimenko, O. V. NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J. Cell Sci. 119, 226–238 (2006)

    Article  CAS  Google Scholar 

  11. Kato, I. et al. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion. J. Biol. Chem. 274, 1869–1872 (1999)

    Article  CAS  Google Scholar 

  12. Johnson, J. D. & Misler, S. Nicotinic acid-adenine dinucleotide phosphate-sensitive calcium stores initiate insulin signaling in human beta cells. Proc. Natl Acad. Sci. USA 99, 14566–14571 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Koshiyama, H., Lee, H. C. & Tashjian, A. H. Novel mechanism of intracellular calcium release in pituitary cells. J. Biol. Chem. 266, 16985–16988 (1991)

    CAS  PubMed  Google Scholar 

  14. Soares, S. M., Thompson, M. & Chini, E. N. Role of the second-messenger cyclic-adenosine 5′-diphosphate-ribose on adrenocorticotropin secretion from pituitary cells. Endocrinology 146, 2186–2192 (2005)

    Article  CAS  Google Scholar 

  15. Hatton, G. I. Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog. Neurobiol. 34, 437–504 (1990)

    Article  CAS  Google Scholar 

  16. Russell, J. A., Leng, G. & Douglas, A. J. The magnocellular oxytocin system, the fount of maternity: adaptations in pregnancy. Front. Neuroendocrinol. 24, 27–61 (2003)

    Article  CAS  Google Scholar 

  17. Argiolas, A. & Melis, M. R. Central control of penile erection: role of the paraventricular nucleus of the hypothalamus. Prog. Neurobiol. 76, 1–21 (2005)

    Article  CAS  Google Scholar 

  18. Keverne, E. B. & Curley, J. P. Vasopressin, oxytocin and social behaviour. Curr. Opin. Neurobiol. 14, 777–783 (2004)

    Article  CAS  Google Scholar 

  19. Insel, T. R. & Fernald, R. D. How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722 (2004)

    Article  CAS  Google Scholar 

  20. Bartels, A. & Zeki, S. The neural correlates of maternal and romantic love. Neuroimage 21, 1155–1166 (2004)

    Article  Google Scholar 

  21. LaBar, K. S. & Cabeza, R. Cognitive neuroscience of emotional memory. Nature Rev. Neurosci. 7, 54–64 (2006)

    Article  CAS  Google Scholar 

  22. Young, L. J. & Wang, Z. The neurobiology of pair bonding. Nature Neurosci. 7, 1048–1054 (2004)

    Article  CAS  Google Scholar 

  23. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. Oxytocin increases trust in humans. Nature 435, 673–676 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Fries, A. B., Ziegler, T. E., Kurian, J. R., Jacoris, S. & Pollak, S. D. Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proc. Natl Acad. Sci. USA 102, 17237–17240 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Kirsch, P. et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 25, 11489–11493 (2005)

    Article  CAS  Google Scholar 

  26. Popik, P., Vetulani, J. & van Ree, J. M. Low doses of oxytocin facilitate social recognition in rats. Psychopharmacol. 106, 71–74 (1992)

    Article  CAS  Google Scholar 

  27. Hollander, E. et al. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders. Neuropsychopharmacol. 28, 193–198 (2003)

    Article  CAS  Google Scholar 

  28. Ferguson, J. N. et al. Social amnesia in mice lacking the oxytocin gene. Nature Genet. 25, 284–288 (2000)

    Article  CAS  Google Scholar 

  29. Takayanagi, Y. et al. Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc. Natl Acad. Sci. USA 102, 16096–16101 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Insel, T. R. & Young, L. J. The neurobiology of attachment. Nature Rev. Neurosci. 2, 129–136 (2001)

    Article  CAS  Google Scholar 

  31. Lim, M. M., Bielsky, I. F. & Young, L. J. Neuropeptides and the social brain: potential rodent models of autism. Int. J. Dev. Neurosci. 23, 235–243 (2005)

    Article  Google Scholar 

  32. Belin, V. & Moos, F. Paired recordings from supraoptic and paraventricular oxytocin cells in suckled rats: recruitment and synchronization. J. Physiol. (Lond.) 377, 369–390 (1986)

    Article  CAS  Google Scholar 

  33. Ludwig, M. & Leng, G. Dendritic peptide release and peptide-dependent behaviours. Nature Rev. Neurosci. 7, 126–136 (2006)

    Article  CAS  Google Scholar 

  34. De Crescenzo, V. et al. Ca2+ syntillas, miniature Ca2+ release events in terminals of hypothalamic neurons, are increased in frequency by depolarization in the absence of Ca2+ influx. J. Neurosci. 24, 1226–1235 (2004)

    Article  CAS  Google Scholar 

  35. Kendrick, K. M. et al. Neural control of maternal behaviour and olfactory recognition of offspring. Brain Res. Bull. 44, 383–395 (1997)

    Article  CAS  Google Scholar 

  36. Yagui, K. et al. A missense mutation in the CD38 gene, a novel factor for insulin secretion: association with Type II diabetes mellitus in Japanese subjects and evidence of abnormal function when expressed in vitro. Diabetologia. 41, 1024–1028 (1998)

    Article  CAS  Google Scholar 

  37. Chini, E. N., Chini, C. C., Kato, I., Takasawa, S. & Okamoto, H. CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues. Biochem. J. 362, 125–130 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. OuYang, W., Wang, G. & Hemmings H. C. Jr Distinct rat neurohypophysial nerve terminal populations identified by size, electrophysiological properties and neuropeptide content. Brain Res. 1024, 203–211 (2004)

    Article  CAS  Google Scholar 

  39. Sasaki, N., Dayanithi, G. & Shibuya, I. Ca2+ clearance mechanisms in neurohypophysial terminals of the rat. Cell Calcium 37, 45–56 (2005)

    Article  CAS  Google Scholar 

  40. Yamashita, M., Glasgow, E., Zhang, B. J., Kusano, K. & Gainer, H. Identification of cell-specific messenger ribonucleic acids in oxytocinergic and vasopressinergic magnocellular neurons in rat supraoptic nucleus by single-cell differential hybridization. Endocrinology 143, 4464–4476 (2002)

    Article  CAS  Google Scholar 

  41. De Flora, A., Zocchi, E., Guida, L., Franco, L. & Bruzzone, S. Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann. NY Acad. Sci. 1028, 176–191 (2004)

    CAS  PubMed  Google Scholar 

  42. Bielsky, I. F., Hu, S. B., Ren, X., Terwilliger, E. F. & Young, L. J. The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47, 503–513 (2005)

    Article  CAS  Google Scholar 

  43. Modahl, C. et al. Plasma oxytocin levels in autistic children. Biol. Psychiatry 15, 270–277 (1998)

    Article  Google Scholar 

  44. Torashima, T., Okoyama, S., Nishizaki, T. & Hirai, H. In vivo transduction of murine cerebellar Purkinje cells by HIV-derived lentiviral vectors. Brain Res. 1082, 11–22 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the COE programme of the Japanese Ministry of Education, Culture, Sports, Science and Technology. We thank D. A. Brown for discussion.

Author Contributions All authors contributed to this paper; in particular, K.Y., S.T., H.O. and A.S. contributed to experimental planning, and H. Higashida, H. Hirai and A.M. performed experimental work and project planning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hirokazu Hirai or Haruhiro Higashida.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures S1-S15 with legends and additional references. (PDF 17846 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, D., Liu, HX., Hirai, H. et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446, 41–45 (2007). https://doi.org/10.1038/nature05526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05526

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing