Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver

Abstract

The determinants of vertebrate organ size are poorly understood, but the process is thought to depend heavily on growth factors and other environmental cues. In the blood and central nervous system, for example, organ mass is determined primarily by growth-factor-regulated cell proliferation and apoptosis to achieve a final target size. Here, we report that the size of the mouse pancreas is constrained by an intrinsic programme established early in development, one that is essentially not subject to growth compensation. Specifically, final pancreas size is limited by the size of the progenitor cell pool that is set aside in the developing pancreatic bud. By contrast, the size of the liver is not constrained by reductions in the progenitor cell pool. These findings show that progenitor cell number, independently of regulation by growth factors, can be a key determinant of organ size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pancreatic progenitor cell ablation.
Figure 2: Lack of compensatory growth during pancreas development.
Figure 3: Small pancreata do not exhibit catch-up growth.
Figure 4: Pdx1 -deficient blastocyst complementation.
Figure 5: Size variation after pancreas complementation.
Figure 6: Compensatory growth during liver development.

Similar content being viewed by others

References

  1. Gilbert, S. F. Developmental Biology (Sinauer, Sunderland, Massachusetts, 2000)

    Google Scholar 

  2. Bryant, P. J. & Simpson, P. Intrinsic and extrinsic control of growth in developing organs. Q. Rev. Biol. 59, 387–415 (1984)

    Article  CAS  Google Scholar 

  3. Conlon, I. & Raff, M. Size control in animal development. Cell 96, 235–244 (1999)

    Article  CAS  Google Scholar 

  4. Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M. & Edgar, B. A. Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2, 239–249 (2002)

    Article  CAS  Google Scholar 

  5. Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Ikeya, T., Galic, M., Belawat, P., Nairz, K. & Hafen, E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12, 1293–1300 (2002)

    Article  CAS  Google Scholar 

  7. Colombani, J. et al. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310, 667–670 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Twitty, V. C. & Schwind, J. L. The growth of eyes and limbs transplanted heteroplastically between two species of Ambystoma. J. Exp. Zool. 59, 61–86 (1931)

    Article  Google Scholar 

  9. Wolpert, L. Cellular basis of skeletal growth during development. Br. Med. Bull. 37, 215–219 (1981)

    Article  CAS  Google Scholar 

  10. Muller-Sieburg, C. E., Cho, R. H., Sieburg, H. B., Kupriyanov, S. & Riblet, R. Genetic control of hematopoietic stem cell frequency in mice is mostly cell autonomous. Blood 95, 2446–2448 (2000)

    CAS  PubMed  Google Scholar 

  11. Robin, C. et al. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev. Cell 11, 171–180 (2006)

    Article  CAS  Google Scholar 

  12. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002)

    CAS  PubMed  Google Scholar 

  13. Holland, A. M., Hale, M. A., Kagami, H., Hammer, R. E. & MacDonald, R. J. Experimental control of pancreatic development and maintenance. Proc. Natl Acad. Sci. USA 99, 12236–12241 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Lee, P. et al. Conditional lineage ablation to model human diseases. Proc. Natl Acad. Sci. USA 95, 11371–11376 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Kistner, A. et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl Acad. Sci. USA 93, 10933–10938 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Guz, Y. et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121, 11–18 (1995)

    CAS  PubMed  Google Scholar 

  17. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994)

    Article  ADS  CAS  Google Scholar 

  18. Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996)

    CAS  PubMed  Google Scholar 

  19. Ahlgren, U., Jonsson, J. & Edlund, H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 122, 1409–1416 (1996)

    CAS  PubMed  Google Scholar 

  20. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA 90, 4528–4532 (1993)

    Article  ADS  CAS  Google Scholar 

  21. Liegeois, N. J., Horner, J. W. & DePinho, R. A. Lens complementation system for the genetic analysis of growth, differentiation, and apoptosis in vivo. Proc. Natl Acad. Sci. USA 93, 1303–1307 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Hadjantonakis, A. K., Macmaster, S. & Nagy, A. Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol. 2, 11 (2002)

    Article  Google Scholar 

  23. Wang, Z. & Jaenisch, R. At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev. Biol. 275, 192–201 (2004)

    Article  CAS  Google Scholar 

  24. Deutsch, G., Jung, J., Zheng, M., Lora, J. & Zaret, K. S. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881 (2001)

    CAS  Google Scholar 

  25. Taub, R. Liver regeneration: from myth to mechanism. Nature Rev. Mol. Cell Biol. 5, 836–847 (2004)

    Article  CAS  Google Scholar 

  26. Westmacott, A., Burke, Z. D., Oliver, G., Slack, J. M. & Tosh, D. C/EBPα and C/EBPβ are markers of early liver development. Int. J. Dev. Biol. 50, 653–657 (2006)

    Article  CAS  Google Scholar 

  27. Lavon, I. et al. High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-κB activation. Nature Med. 6, 573–577 (2000)

    Article  CAS  Google Scholar 

  28. Furth, P. A. et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl Acad. Sci. USA 91, 9302–9306 (1994)

    Article  ADS  CAS  Google Scholar 

  29. Kalthoff, K. Analysis of Biological Development (McGraw-Hill, New York, 1996)

    Google Scholar 

  30. Gallant, P. Myc, cell competition, and compensatory proliferation. Cancer Res. 65, 6485–6487 (2005)

    Article  CAS  Google Scholar 

  31. Hidalgo, A. & ffrench-Constant, C. The control of cell number during central nervous system development in flies and mice. Mech. Dev. 120, 1311–1325 (2003)

    Article  CAS  Google Scholar 

  32. Morrison, S. J., Uchida, N. & Weissman, I. L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35–71 (1995)

    Article  CAS  Google Scholar 

  33. Bort, R., Signore, M., Tremblay, K., Martinez Barbera, J. P. & Zaret, K. S. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44–56 (2006)

    Article  CAS  Google Scholar 

  34. Bhushan, A. et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128, 5109–5117 (2001)

    CAS  PubMed  Google Scholar 

  35. Norgaard, G. A., Jensen, J. N. & Jensen, J. FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev. Biol. 264, 323–338 (2003)

    Article  CAS  Google Scholar 

  36. Hart, A., Papadopoulou, S. & Edlund, H. Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev. Dyn. 228, 185–193 (2003)

    Article  CAS  Google Scholar 

  37. Papadopoulou, S. & Edlund, H. Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function. Diabetes 54, 2844–2851 (2005)

    Article  CAS  Google Scholar 

  38. Murtaugh, L. C., Law, A. C., Dor, Y. & Melton, D. A. β-catenin is essential for pancreatic acinar but not islet development. Development 132, 4663–4674 (2005)

    Article  CAS  Google Scholar 

  39. Heiser, P. W., Lau, J., Taketo, M. M., Herrera, P. L. & Hebrok, M. Stabilization of β-catenin impacts pancreas growth. Development 133, 2023–2032 (2006)

    Article  CAS  Google Scholar 

  40. Temple, S. & Raff, M. C. Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 44, 773–779 (1986)

    Article  CAS  Google Scholar 

  41. Weissman, I. L., Anderson, D. J. & Gage, F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387–403 (2001)

    Article  CAS  Google Scholar 

  42. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. MacDonald, R. DePinho, G. Fishman, H. Bujard and C. Wright for sharing mouse strains, C. Wright for sharing antibodies, and A. Nagy for providing ES cells. We also thank M. Stolovich-Rein and Y. Dor for assistance in quantifying chimaerism, A. Greenwood for assistance with pancreatic lineage quantification, and A. Panikkar for assistance with morphometric analysis. We are grateful to J. Rajagopal, D. Huangfu, Y. Dor and Q. Zhou for critically reading the manuscript, and to S. Snapper, K. Eggan and H. Akutsu for suggestions and technical expertise. L. Peeples and J. Zhang provided assistance with the statistical analysis. B.Z.S. is supported by an award from NIDDK. D.A.M. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ben Z. Stanger or Douglas A. Melton.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-7 with Legends, Supplementary Table 1 and additional references. (PDF 1650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanger, B., Tanaka, A. & Melton, D. Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 445, 886–891 (2007). https://doi.org/10.1038/nature05537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05537

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing