Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The architecture of human kin detection

Abstract

Evolved mechanisms for assessing genetic relatedness have been found in many species, but their existence in humans has been a matter of controversy. Here we report three converging lines of evidence, drawn from siblings, that support the hypothesis that kin detection mechanisms exist in humans. These operate by computing, for each familiar individual, a unitary regulatory variable (the kinship index) that corresponds to a pairwise estimate of genetic relatedness between self and other. The cues that the system uses were identified by quantitatively matching individual exposure to potential cues of relatedness to variation in three outputs relevant to the system’s evolved functions: sibling altruism, aversion to personally engaging in sibling incest, and moral opposition to third party sibling incest. As predicted, the kin detection system uses two distinct, ancestrally valid cues to compute relatedness: the familiar other’s perinatal association with the individual’s biological mother, and duration of sibling coresidence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed model of the computational architecture of sibling detection.
Figure 2: Converging evidence indicates that the same computational variable, the kinship index, regulates disparate kin-relevant behaviours.
Figure 3: When MPA and coresidence duration cues are both available, the kin detection system defaults to MPA, the more reliable cue.

References

  1. Hamilton, W. D. The genetical evolution of social behaviour. I, II. J. Theor. Biol. 7, 1–52 (1964)

    Article  CAS  Google Scholar 

  2. Williams, G. C. & Williams, D. C. Natural selection of individually harmful social adaptations among sibs with special reference to social insects. Evolution 11, 32–39 (1957)

    Article  Google Scholar 

  3. Strassmann, J. E., Zhu, Y. & Queller, D. C. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408, 965–967 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Crozier, R. H. & Pamilo, P. Evolution of social insect colonies: Sex allocation and kin-selection (Oxford Univ. Press, Oxford, 1996)

    Google Scholar 

  5. Chapuisat, M. & Keller, L. Testing kin selection with sex allocation data in eusocial hymenoptera. Heredity 82, 473–478 (1999)

    Article  Google Scholar 

  6. Passera, L., Aron, S., Vargo, E. L. & Keller, L. Queen control of sex ratio in fire ants. Science 293, 1308–1310 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Duffy, J. E. Eusociality in a coral-reef shrimp. Nature 381, 512–514 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Baglione, V., Canestrari, D., Marcos, J. & Ekman, J. Kin selection in cooperative alliances of carrion crows. Science 300, 1947–1949 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Ito, Y. The evolutionary biology of sterile soldiers in aphids. Trends Ecol. Evol. 4, 69–73 (1989)

    Article  CAS  Google Scholar 

  10. Queller, D. C. Inclusive fitness in a nutshell. Oxford Surveys Evol. Biol. 6, 73–109 (1989)

    Google Scholar 

  11. Cosmides, L. & Tooby, J. Cytoplasmic inheritance and intragenomic conflict. J. Theor. Biol. 89, 83–129 (1981)

    Article  CAS  Google Scholar 

  12. Sherman, P. W. Nepotism and the evolution of alarm calls. Science 197, 1246–1253 (1977)

    Article  ADS  CAS  Google Scholar 

  13. Buchan, J. C., Alberts, S. C., Silk, J. B. & Altmann, J. True paternal care in a multi-male primate society. Nature 425, 179–181 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Chapais, B. & Berman, C. M. (eds) Kinship and Behavior in Primates (Oxford Univ. Press, New York, 2004)

    Google Scholar 

  15. Silk, J. B. Kin selection in primate groups. Int. J. Primatol. 23, 849–875 (2002)

    Article  Google Scholar 

  16. Fletcher, D. & Michener, C. (eds) Kin Recognition in Animals (Wiley, New York, 1987)

    Google Scholar 

  17. Hepper, P. G. Kin Recognition (Cambridge Univ. Press, New York, 1991)

    Book  Google Scholar 

  18. Holmes, W. The early history of Hamiltonian-based kin recognition research theory: past and future. Ann. Zool. Fennici 41, 691–711 (2004)

    Google Scholar 

  19. Charlesworth, B. & Charlesworth, D. The genetic basis of inbreeding depression. Genet. Res. 74, 329–340 (1999)

    Article  CAS  Google Scholar 

  20. Crnokrak, P. & Roff, D. A. Inbreeding depression in the wild. Heredity 83, 260–270 (1999)

    Article  Google Scholar 

  21. Bittles, A. H. & Neel, J. V. The costs of human inbreeding and their implications for variation at the DNA level. Nature Genet. 8, 117–121 (1994)

    Article  CAS  Google Scholar 

  22. Tooby, J. Pathogens, polymorphism, and the evolution of sex. J. Theor. Biol. 97, 557–576 (1982)

    Article  CAS  Google Scholar 

  23. Penn, D. J. & Potts, W. K. The evolution of mating preferences and major histocompatibility coupled genes. Am. Nat. 153, 145–164 (1999)

    Article  Google Scholar 

  24. Lee, R. B. & Devore, I. Man the Hunter (Aldine, Chicago, 1968)

    Google Scholar 

  25. Howell, N. Demography of the Dobe! Kung 2nd edn (Aldine Transaction, New York, 2000)

    Google Scholar 

  26. Hill, K. & Hurtado, A. Ache Life History: The Ecology and Demography of a Foraging People (Aldine Transaction, New York, 1996)

    Google Scholar 

  27. Bevc, I. & Silverman, I. Early separation and sibling incest: A test of the revised Westermarck theory. Evol. Hum. Behav. 21, 151–161 (2000)

    Article  CAS  Google Scholar 

  28. Lieberman, D., Tooby, J. & Cosmides, L. Does morality have a biological basis? An empirical test of the factors governing moral sentiments regarding incest. Proc. R. Soc. Lond. B 270, 819–826 (2003)

    Article  Google Scholar 

  29. Fessler, D. M. T. & Navarrete, C. D. Third-party attitudes toward sibling incest: Evidence for Westermarck’s hypotheses. Evol. Hum. Behav. 25, 277–294 (2004)

    Google Scholar 

  30. Wedekind, C. & Furi, S. Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity?. Proc. R. Soc. Lond. B 264, 1471–1479 (1997)

    Article  ADS  CAS  Google Scholar 

  31. Ober, C. et al. HLA and mate choice in humans. Am. J. Hum. Genet. 61, 497–504 (1997)

    Article  CAS  Google Scholar 

  32. DeBruine, L. M. Trustworthy but not lust-worthy: Context-specific effects of facial resemblance. Proc. R. Soc. Lond. B 272, 919–922 (2005)

    Article  Google Scholar 

  33. Westermarck, E. A. The History of Human Marriage 5th edn (Macmillan, London, 1891/, 1921)

    Google Scholar 

  34. Wolf, A. P. Sexual Attraction and Childhood Association: A Chinese Brief for Edward Westermarck (Stanford Univ. Press, Stanford, California, 1995)

    Google Scholar 

  35. Shepher, J. Mate selection among second generation kibbutz adolescents and adults: incest avoidance and negative imprinting. Arch. Sex. Behav. 1, 293–307 (1971)

    Article  CAS  Google Scholar 

  36. Kaplan, H. et al. A theory of human life history evolution: Diet, intelligence, and longevity. Evol. Anthropol. 9, 156–185 (2000)

    Article  Google Scholar 

  37. Hewlett, B. & Lamb, M. Hunter–Gatherer Childhoods (Aldine Transaction, Somerset, New Jersey, 2005)

    Google Scholar 

  38. Walters, J. R. in Kin Recognition in Animals (eds Fletcher, D. J. C. & Michener, C. D.) 359–393 (Wiley & Sons, New York, 1987)

    Google Scholar 

  39. Bernstein, I. in Kin Recognition (ed. Hepper, P. G.) 6–29 (Cambridge Univ. Press, Cambridge, 1991)

    Book  Google Scholar 

  40. Gigerenzer, G. & Todd, P. ABC Research Group. Simple Heuristics That Make Us Smart (Oxford Univ. Press, New York, 1999)

    Google Scholar 

  41. Mielke, P. W. & Berry, K. J. Permutation Methods: A Distance Function Approach (Springer, New York, 2001)

    Book  Google Scholar 

  42. Cade, B. S. & Richards, J. D. User Manual for BLOSSOM Statistical Software (Midcontinent Ecological Science Center, US Geological Survey, Fort Collins, Colorado, 2005)

    Google Scholar 

  43. Rice, W. R. & Gaines, S. D. Heads I win, tails you lose: Testing directional alternative hypotheses in ecological and evolutionary research. Trends Ecol. Evol. 9, 235–237 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Boyer, D. Fessler, S. Gangestad, P. Pocker, H. Waldow, G. Williams, D. Williams, UCSB Academic Senate and the providers of the NSF Presidential Young Investigator Award (J.T.), and NIH Director’s Pioneer Award (L.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra Lieberman.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion, Supplementary Figures S1-S8 with Legends, Supplementary Tables S1-S8 and additional references. (PDF 740 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieberman, D., Tooby, J. & Cosmides, L. The architecture of human kin detection. Nature 445, 727–731 (2007). https://doi.org/10.1038/nature05510

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05510

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing