Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Patterning of sodium ions and the control of electrons in sodium cobaltate

Abstract

Sodium cobaltate (NaxCoO2) has emerged as a material of exceptional scientific interest due to the potential for thermoelectric applications1,2, and because the strong interplay between the magnetic and superconducting properties has led to close comparisons with the physics of the superconducting copper oxides3. The density x of the sodium in the intercalation layers can be altered electrochemically, directly changing the number of conduction electrons on the triangular Co layers4. Recent electron diffraction measurements reveal a kaleidoscope of Na+ ion patterns as a function of concentration5. Here we use single-crystal neutron diffraction supported by numerical simulations to determine the long-range three-dimensional superstructures of these ions. We show that the sodium ordering and its associated distortion field are governed by pure electrostatics, and that the organizational principle is the stabilization of charge droplets that order long range at some simple fractional fillings. Our results provide a good starting point to understand the electronic properties in terms of a Hubbard hamiltonian6 that takes into account the electrostatic potential from the Na superstructures. The resulting depth of potential wells in the Co layer is greater than the single-particle hopping kinetic energy and as a consequence, holes preferentially occupy the lowest potential regions. Thus we conclude that the Na+ ion patterning has a decisive role in the transport and magnetic properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Na x CoO 2 has Na + ions intercalated between CoO 2 layers.
Figure 2: Neutron diffraction showing bulk three-dimensional ordering of Na+.
Figure 3: Real space superstructure.
Figure 4: Coulomb potential in the Co plane calculated using ordered superstructures.

Similar content being viewed by others

References

  1. Terasaki, I., Sasago, Y. & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Lee, M. et al. Large enhancement of the thermopower in NaxCoO2 at high Na doping. Nature Mater. 5, 537–540 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Takada, K. et al. Superconductivity in two-dimensional CoO2 layers. Nature 422, 53–55 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Delmas, C. et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 3/4, 165–169 (1981)

    Article  Google Scholar 

  5. Zandbergen, H. W. et al. Sodium ion ordering in NaxCoO2: Electron diffraction study. Phys. Rev. B 70, 024101 (2004)

    Article  ADS  Google Scholar 

  6. Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963)

    Article  ADS  Google Scholar 

  7. Wang, Y. Y., Rogado, N. S., Cava, R. J. & Ong, N. P. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 . Nature 423, 425–428 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996)

    Article  CAS  Google Scholar 

  9. Zhang, P., Capaz, R. B., Cohen, M. L. & Louie, S. G. Theory of sodium ordering in NaxCoO2 . Phys. Rev. B 71, 153102 (2005)

    Article  ADS  Google Scholar 

  10. Huang, Q. et al. Low temperature phase transition and crystal structure of Na0. 5CoO2 . J. Phys. Condens. Matter 16, 5803–5814 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Foo, M. L. et al. Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2 . Phys. Rev. Lett. 92, 247001 (2004)

    Article  ADS  Google Scholar 

  12. de Vaulx, C. et al. Nonmagnetic insulator state in Na1CoO2 and phase separation of Na vacancies. Phys. Rev. Lett. 95, 186405 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Huang, Q. et al. Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2 . Phys. Rev. B 70, 184110 (2004)

    Article  ADS  Google Scholar 

  14. Balsys, R. J. & Davis, R. L. Refinement of the structure of Na0. 74CoO2 using neutron powder diffraction. Solid State Ionics 93, 279–282 (1996)

    Article  Google Scholar 

  15. Mukhamedshin, I. R. et al. 28Na NMR evidence for charge order and anomalous magnetism in NaxCoO2 . Phys. Rev. Lett. 93, 167601 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Yokoi, M. et al. Magnetic correlation of NaxCoO2 and successive phase transitions of Na0. 5CoO2—NMR and neutron diffraction studies. J. Phys. Soc. Jpn 74, 3046–3056 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Hasan, M. Z. et al. Fermi surface and quasiparticle dynamics of Na0. 7CoO2 investigated by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 92, 246402 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Mukhamedshin, I. R., Alloul, H., Collin, G. & Blanchard, N. 59Co NMR study of the Co states in superconducting and anhydrous cobaltates. Phys. Rev. Lett. 94, 247602 (2005)

    Article  ADS  Google Scholar 

  19. Bayrakci, S. P. et al. Magnetic ordering and spin waves in Na0. 82CoO2 . Phys. Rev. Lett. 94, 157205 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Helme, L. M. et al. Three-dimensional spin fluctuations in Na0. 75CoO2 . Phys. Rev. Lett. 94, 157206 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Slack, G. A. & Tsoukala, V. G. Some properties of semiconducting IrSb3 . J. Appl. Phys. 76, 1665 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Nolas, G. S. et al. Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178–180 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Nolas, G. S. et al. Effect of partial void filling on the lattice thermal conductivity of skutterudites. Phys. Rev. B 58, 164–170 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Sakurai, H. et al. The role of the water molecules in novel superconductor, Na0. 35CoO2 · 1.3H2O. Physica C 412–414, 182–186 (2004)

    Article  ADS  Google Scholar 

  25. Prabhakaran, D., Boothroyd, A. T., Coldea, R. & Charnley, N. R. Crystal growth of NaxCoO2 under different atmospheres. J. Cryst. Growth 271, 74–80 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Fumi, F. G. & Tosi, M. P. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides. J. Phys. Chem. Solids 25, 31–52 (1964)

    Article  ADS  CAS  Google Scholar 

  27. Sperb, R. An alternative to Ewald sums. Mol. Simul. 20, 179–200 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Lee, J. Irvine, P. Radaelli, A. Daoud-Aladine, K. Kiefer, D. Argyriou, R. Coldea and M. Nohara for discussions, and T. Bowcock and A. Washbrook for the use of the MAP2 supercomputer at the University of Liverpool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Roger.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-6 with Legends. The figures show the determination of the commensurate supercell, the scattering from other multi-vacancy cluster models, a sodium re-ordering transition, the high-temperature phase, the relation to the electrical properties, and Monte Carlo simulations as a function of composition. (PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roger, M., Morris, D., Tennant, D. et al. Patterning of sodium ions and the control of electrons in sodium cobaltate. Nature 445, 631–634 (2007). https://doi.org/10.1038/nature05531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05531

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing