Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast

Abstract

Cyclin-dependent kinases (CDKs) drive major cell cycle events including the initiation of chromosomal DNA replication. We identified two S phase CDK (S-CDK) phosphorylation sites in the budding yeast Sld3 protein that, together, are essential for DNA replication. Here we show that, when phosphorylated, these sites bind to the amino-terminal BRCT repeats of Dpb11. An Sld3–Dpb11 fusion construct bypasses the requirement for both Sld3 phosphorylation and the N-terminal BRCT repeats of Dpb11. Co-expression of this fusion with a phospho-mimicking mutant in a second essential CDK substrate, Sld2, promotes DNA replication in the absence of S-CDK. Therefore, Sld2 and Sld3 are the minimal set of S-CDK targets required for DNA replication. DNA replication in cells lacking G1 phase CDK (G1-CDK) required expression of the Cdc7 kinase regulatory subunit, Dbf4, as well as Sld2 and Sld3 bypass. Our results help to explain how G1- and S-CDKs promote DNA replication in yeast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sld3 is an essential CDK substrate.
Figure 2: CDK-phosphorylated Sld3 binds to Dpb11.
Figure 3: Dpb11–Sld3 interaction is the essential function of Sld3 CDK phosphorylation sites and the N terminus of Dpb11.
Figure 4: DNA replication in the absence of S-CDK activity.
Figure 5: CDK bypass and Dbf4 overexpression allows replication in G1 cells.

Similar content being viewed by others

References

  1. Blow, J. J. & Dutta, A. Preventing re-replication of chromosomal DNA. Nature Rev. Mol. Cell Biol. 6, 476–486 (2005)

    Article  CAS  Google Scholar 

  2. Diffley, J. F. X. Regulation of early events in chromosome replication. Curr. Biol. 14, R778–R786 (2004)

    Article  CAS  Google Scholar 

  3. Donaldson, A. D. et al. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell 2, 173–183 (1998)

    Article  CAS  Google Scholar 

  4. Epstein, C. B. & Cross, F. R. CLB5, a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6, 1695–1706 (1992)

    Article  CAS  Google Scholar 

  5. Kuhne, C. & Linder, P. A new pair of B-type cyclins from Saccharomyces cerevisiae that function early in the cell cycle. EMBO J. 12, 3437–3447 (1993)

    Article  CAS  Google Scholar 

  6. Schwob, E. & Nasmyth, K. CLB5 and CLB6. a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7, 1160–1175 (1993)

    Article  CAS  Google Scholar 

  7. Bousset, K. & Diffley, J. F. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12, 480–490 (1998)

    Article  CAS  Google Scholar 

  8. Donaldson, A. D., Fangman, W. L. & Brewer, B. J. Cdc7 is required throughout the yeast S phase to activate replication origins. Genes Dev. 12, 491–501 (1998)

    Article  CAS  Google Scholar 

  9. Ubersax, J. A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Wang, H. & Elledge, S. J. DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 96, 3824–3829 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Kamimura, Y., Masumoto, H., Sugino, A. & Araki, H. Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol. Cell. Biol. 18, 6102–6109 (1998)

    Article  CAS  Google Scholar 

  12. Masumoto, H., Muramatsu, S., Kamimura, Y. & Araki, H. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415, 651–655 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Noguchi, E., Shanahan, P., Noguchi, C. & Russell, P. CDK phosphorylation of Drc1 regulates DNA replication in fission yeast. Curr. Biol. 12, 599–605 (2002)

    Article  CAS  Google Scholar 

  14. Kamimura, Y., Tak, Y. S., Sugino, A. & Araki, H. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J. 20, 2097–2107 (2001)

    Article  CAS  Google Scholar 

  15. Glover, J. N., Williams, R. S. & Lee, M. S. Interactions between BRCT repeats and phosphoproteins: tangled up in two. Trends Biochem. Sci. 29, 579–585 (2004)

    Article  CAS  Google Scholar 

  16. Tak, Y. S., Tanaka, Y., Endo, S., Kamimura, Y. & Araki, H. A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2–Dpb11. EMBO J. 25, 1987–1996 (2006)

    Article  CAS  Google Scholar 

  17. Schwob, E., Bohm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233–244 (1994)

    Article  CAS  Google Scholar 

  18. Desdouets, C. et al. Evidence for a Cdc6p-independent mitotic resetting event involving DNA polymerase α. EMBO J. 17, 4139–4146 (1998)

    Article  CAS  Google Scholar 

  19. Noton, E. A. & Diffley, J. F. X. CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol. Cell 5, 85–95 (2000)

    Article  CAS  Google Scholar 

  20. Tanaka, S. & Diffley, J. F. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2–7 during G1 phase. Nature Cell Biol. 4, 198–207 (2002)

    Article  CAS  Google Scholar 

  21. Wilmes, G. M. et al. Interaction of the S-phase cyclin Clb5 with an ‘RXL’ docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev. 18, 981–991 (2004)

    Article  CAS  Google Scholar 

  22. Richardson, H., Wittenberg, C., Cross, F. & Reed, S. An essential G1 function for cyclin-like proteins in yeast. Cell 59, 1127–1133 (1989)

    Article  CAS  Google Scholar 

  23. Tyers, M. The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Proc. Natl Acad. Sci. USA 93, 7772–7776 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Schneider, B. L., Yang, Q. H. & Futcher, A. B. Linkage of replication to start by the Cdk inhibitor Sic1. Science 272, 560–562 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Patton, E. E. et al. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 12, 692–705 (1998)

    Article  CAS  Google Scholar 

  27. Verma, R. et al. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S Phase. Science 278, 455–460 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Cheng, L., Collyer, T. & Hardy, C. F. Cell cycle regulation of DNA replication initiator factor Dbf4p. Mol. Cell. Biol. 19, 4270–4278 (1999)

    Article  CAS  Google Scholar 

  30. Oshiro, G., Owens, J. C., Shellman, Y., Sclafani, R. A. & Li, J. J. Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability. Mol. Cell. Biol. 19, 4888–4896 (1999)

    Article  CAS  Google Scholar 

  31. Godinho Ferreira, M., Santocanale, C., Drury, L. S. & Diffley, J. F. X. Dbf4p, an essential S phase promoting factor, is targeted for degradation by the Anaphase Promoting Complex. Mol. Cell. Biol. 20, 242–248 (2000)

    Article  Google Scholar 

  32. Hardy, C. F., Dryga, O., Seematter, S., Pahl, P. M. & Sclafani, R. A. Mcm5/Cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc. Natl Acad. Sci. USA 94, 3151–3155 (1997)

    Article  ADS  CAS  Google Scholar 

  33. Matsuno, K., Kumano, M., Kubota, Y., Hashimoto, Y. & Takisawa, H. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase α in the initiation of DNA replication. Mol. Cell. Biol. 26, 4843–4852 (2006)

    Article  CAS  Google Scholar 

  34. Sangrithi, M. N. et al. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121, 887–898 (2005)

    Article  CAS  Google Scholar 

  35. Makiniemi, M. et al. BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J. Biol. Chem. 276, 30399–30406 (2001)

    Article  CAS  Google Scholar 

  36. Yamamoto, R. R. et al. The Drosophila mus101 gene, which links DNA repair, replication and condensation of heterochromatin in mitosis, encodes a protein with seven BRCA1 C-terminus domains. Genetics 156, 711–721 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Diffley, J. F., Cocker, J. H., Dowell, S. J. & Rowley, A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303–316 (1994)

    Article  CAS  Google Scholar 

  38. Labib, K., Diffley, J. F. & Kearsey, S. E. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nature Cell Biol. 1, 415–422 (1999)

    Article  CAS  Google Scholar 

  39. Foiani, M., Marini, F., Gamba, D., Lucchini, G. & Plevani, P. The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol. Cell. Biol. 14, 923–933 (1994)

    Article  CAS  Google Scholar 

  40. Harlow, E. & Lane, D. Using Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1998)

    Google Scholar 

Download references

Acknowledgements

We thank H. Araki and colleagues for sharing unpublished information. We are grateful to J. A. Tercero for making strain y1187 and S. Sweet for making strain y2003 and providing extracts. We are grateful to ARIAD pharmaceuticals for providing the ARGENT Regulated Heterodimerization Kit. We thank J. Gannon for assistance with the BIACORE 3000. We are grateful to N. O’Reilly and the Peptide Synthesis Facility at the London Research Institute. We thank members of our laboratory for helpful discussion and criticism of the manuscript. P.Z. is supported by a Cancer Research UK fellowship.

Author Contributions P.Z. and J.F.X.D. conceived and designed experiments and wrote the paper. P.Z. performed all experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. X. Diffley.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains detailed Supplementary Methods, Supplementary Figures 1-7 providing data supporting the paper’s main conclusions (described in the main text) and a Supplementary Table of yeast strain geneotypes used in the manuscript. (PDF 767 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zegerman, P., Diffley, J. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445, 281–285 (2007). https://doi.org/10.1038/nature05432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05432

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing